# Learning Mathematics Using Tl-84 PLUS Graphing Calculator 

 MINISTIRY OF EDUCATION MALAYSIA

## Learning Mathematics

## Using TI-84 Plus Graphing Calculator

First Printing 2010
© Curriculum Development Division
Malaysia Ministry of Education

First Printing 2010
© Curriculum Development Division
Malaysia Ministry of Education

## Curriculum Development Division

Malaysia Ministry of Education
Level 4 - 8, Block E9, Government Complex Parcel E,
Federal Government Administrative Centre,
62604 Putrajaya

All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.

## Contents

|  | PAGE |
| :--- | :---: |
| PREFACE | I |
| ACKNOWLEDGEMENT | II |
| INTRODUCTION | III |
| OBJECTIVE | IV |
| MODULE LAYOUT | IV |


| SUBJECT | FORM | TOPIC | Page |
| :---: | :---: | :---: | :---: |
| MATHEMATICS | FORM 4 | 1. The Straight Line | 1 |
|  |  | 2. Statistics | 22 |
|  |  | 3. Trigonometry 2 | 45 |
|  | FORM 5 | 4. Graph of Functions 2 | 53 |
|  |  | 5. Matrices | 63 |
|  |  | 6. Gradient and Area under the graph | 81 |
|  |  | 7. Probability 2 | 98 |
| ADDITIONAL MATHEMATICS | FORM 4 | 8. Functions | 107 |
|  |  | 9. Quadratic Functions | 115 |
|  |  | 10. Simultaneous Equation | 129 |
|  |  | 11. Coordinate Geometry | 140 |
|  |  | 12. Differentiations | 147 |
|  | FORM 5 | 13. Progressions | 158 |
|  |  | 14. Linear Law | 168 |
|  |  | 15. Integration | 179 |
|  |  | 16. Trigonometric functions | 186 |
|  |  | 17. Linear Programming | 224 |

PANEL OF CONTRIBUTORS ..... 235

## PREFACE

Education must change to keep pace with the demands of the present world. Learning in the 21 st century must leverage the affordances of new technologies, employ better pedagogies based on recent research on student learning, and be cognizant of the characteristics of a new breed of learners.

The Ministry of Education (MOE) acknowledges that it is vital to prepare pupils for life in today's highly technical society. Pupils' mathematical knowledge must be included to go beyond the simple skills into solving more complex problems. With this realisation, the MOE continuously advocates integration of technology in the teaching and learning of mathematics to develop the intellectual capital and educate students to think creatively.

Effective use of technology however, requires teachers to introduce changes in teaching strategies and move away from teacher- to pupil-centred activities. Teachers need to take up the role as facilitators and pier guides; and teaching and learning has to change from memorisation and rote learning culture to the culture of problem solving and generation of knowledge.

Graphing calculator is seen as an essential tool for doing and learning mathematics in the classroom. This technology is believed to permit students to focus on mathematical ideas, to reason, and solve problems in ways that are often difficult or impossible by traditional means. The graphing calculator enhances the learning of mathematics by allowing for increased exploration and enhanced representation of ideas. Range of problems that can be assessed is also extended.

Having invested substantially in technologies, the MOE need to ensure that teachers are trained and support materials provided to enable them to integrate technology effectively in their teaching and learning. The Learning Mathematics using Graphing Calculator Series is thus initiated to help in the development of pupils' mathematical thinking skills, enhancing the mathematical discourse when pupils investigate and interact with each other and teachers as well. This initiative is based on the belief that technical-graphical-based tools provide better experience for pupils in the learning of mathematics. The content of this particular module is based on TI-84 Plus Graphing Calculator keystroke which will be improved and added on to from time to time. Modules based on different graphing calculator will follow.

Last but not least, MOE would like to express much gratitude and appreciation to the teachers and MOE officers who contributed to the development of this module in the Learning Mathematics using Graphing Calculator Series.
(DATU Dr HJ. JULAIHI HJ. BUJANG)
Director
Curriculum Development Division
Ministry of Education Malaysia

## ACKNOWLEDGEMENT

# The Curriculum Development Division, Ministry of Education wishes to express our deepest gratitude and appreciation to all panels of contributors for their expert views, opinions, dedications and continuous support in development of this module 

## Introduction

## Background

This module series is especially targeted at pupils taking the Mathematics and Additional Mathematics at the upper secondary level. This one of the continuous efforts initiated by Curriculum Development Division, Ministry of Education, to ensure the teaching and learning can be done more interactively and effectively using graphing calculators. The MOE believes that the use of graphing calculators will help pupils visualise concepts as they make connections with data. When pupils can actually see expressions, formulas, graphs, and the result of changing a variable on those visual representations, a deeper understanding of concept can result.

## TI-83 Plus, TI-84 Plus Graphic Calculator

The TI-83 Plus or TI-84 Plus graphing calculator, models from Texas-Instrument, is a handheld tool that can be easily learnt by teachers, students, and those interested. All commands are placed in neatly arranged pull-down menus, and in the event that one cannot find the commands, the calculator's catalogue gives an alphabetically arranged list of all the commands. The keys have also been strategically arranged in functional groups for easy access to the user.

The models can handle real and complex numbers, matrices and even strings. Its features for trigonometry, calculus, and simple algebra in the form of an equation solver will also meets the needs of most secondary school curriculum. In addition, it can carry out list-based oneand two-variable statistical analysis. The descriptive statistics and linear regression models are applicable to Malaysian secondary school curriculum, whilst the calculator's advanced hypothesis testing, confidence intervals and distributions.

## Objective

The objective of this module is to suggest some activities that can be carried out by teachers using Graphing Calculator from Texas-Instrument model, particularly TI-83 Plus or TI-84 Plus during their respective lessons. This module consist both elements in Mathematics and Additional Mathematics. It focuses on upper-form syllabus which includes all components such as Algebraic, Geometric, Statistics, Trigonometric and Calculus. It intends to enable students to investigate and apply mathematical ideas in a way not easily achieved by conventional means.

## Module layout

This module encompasses some of topics in form 4 and form 5. It comprising subjects in Mathematics and Additional Mathematics as follows:-

| No | Subjects | Topics |  |
| :---: | :---: | :---: | :---: |
|  |  | Form 4 | Form 5 |
| 1 | Mathematics | - The Straight Line <br> - Statistics <br> - Trigonometry 2 | - Graph of Functions 2 <br> - Matrix <br> - Gradient and Area under the graph <br> - Probability 2 |
| 2 | Additional Mathematics | - Functions <br> - Quadratic Functions <br> - Simultaneous Equation <br> - Coordinate Geometry <br> - Differentiation | - Progression <br> - Linear Law <br> - Integration <br> - Trigonometric functions <br> - Linear Programming |

The principle layout for the activities may include:-

- Topic
- Lesson Objective
- Table of Procedure, Screenshot/Key stroke, and notes
- Investigations
- Teachers'guide
- Students' Worksheet
- Enrichment


## TOPIC

## : THE STRAIGHT LINE

## LESSON OBJECTIVE :

Students will be able to...
i. Draw the graph given an equation of the form $y=m x+c$.
ii. Determine whether a given point lies on a specific straight line.
iii. Verify that $m$ is the gradient and $c$ is the $y$-intercept of a straight line with equation $y=m x+c$.
iv. Explore properties of parallel lines.

EXAMPLE QUESTION : Draw the graph, $y=x+2$, and answer the questions that follow:
a) Find the value of $y$ given the $x=1$
b) Determine whether these points lies on the graph drawn:-
i) $(2,4)$
ii) $(-1,2)$

| Step | Procedure | Screenshot / key-strok | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Draw the graph of $y=x+2$. Then, press GRAPH. |  | Remember to reset the RAM. |
| 2 | Press TRACE to read the value of $y$ if $x=1$. |  | You will find that your answer is in the form of decimals and you'll find that it's very hard to bring the cursor exactly at $\boldsymbol{x}=1$. |
| 3 | Press 2nd TRACE for [CALC], then choose [1:value], and press ENTER. <br> Then, key-in $\boldsymbol{x}=\mathbf{1}$, press ENTER. |  | (Question a) <br> Find the value of $y$ given the $x=1$ <br> Then you will get $y=$ $\qquad$ |
| 4 | Press 2nd TRACE for [CALC], then choose [1:value] press ENTERT. <br> Then, key-in the $x$-value from every coordinate. See the $y$-value for comparison and to have the answer. |  | (Question b) Determine whether these points lie on the straight line $y=x+2$. <br> a) $(2,4)$ [Answer:- $\qquad$ <br> b) $(-1,2)$ [Answer:: $\qquad$ |

## DISCUSSION

1. By using the same method, find the value of $y$ when $x=-5$ (SPM formatted question).

$$
y=-3
$$

2. How do you determine whether the point ( $-1,2$ ) satisfy the equation $y=x+2$ ?

By substituting the value of $x$ and $y$ in the equation
3. Are these points lies on the straight line given below?

| Punctions |  |  |  |
| :--- | :--- | :--- | :--- |
| 1. $y=x-3$ |  | $(5,-7)$ | $(2,4)$ |
| $2 . y=3 x-2$ | Yes | No | No |
| 3. $2 y+4 x=6$ | No | No | Yes |

## DISCUSSION

1. By using the same method, find the value of $y$ when $x=-5$ (SPM formatted question).
$\qquad$
2. How do you determine whether the point $(-1,2)$ satisfy the equation $y=x+2$ ?
$\qquad$
3. Are these points lies on the straight line given below?

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| functions | $(6,3)$ | $(5,-7)$ | $(2,4)$ |
| 1. $y=x-3$ |  |  |  |
| 2. $y=3 x-2$ |  |  |  |
| 3. $2 y+4 x=6$ |  |  |  |

## ACTIVITY 1

Complete the table below with appropriate value of the gradient, $m$ the $x$-intercept, and the $y$-intercept using graphing calculator, given the function $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$
a) Press $Y=$
b) Key in the linear function given. Example, $\boldsymbol{y}=\boldsymbol{x}+5$
c) Press $X, \mathrm{~T}, \Theta, n \square 5$ GRAPH

| No | Function | Value of m | Sketch your graph | $x$-intercept | $y$-intercept |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | $y=5 x$ | 5 |  | 0 | 0 |
| 2. | $y=-5 x$ | -5 |  | 0 | 0 |
| 3. | $y=0.4 x$ | 0.4 |  | 0 | 0 |
| 4. | $y=-2 x$ | -2 |  | 0 | 0 |


| No | Function | Value of $m$ | Sketch your graph | $x$-intercept | $y$-intercept |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5. | $y=-0.3 x$ | -0.3 |  |  |  |
|  |  |  |  | 0 | 0 |
| 6. | $y=0.08 x$ | 0.08 |  |  |  |

## DISCUSSION

1. Compare your answers with your friends, and present your answers in the class.
a) Compare graph no. 1,3 and 6 with the graph $y=x$.

Is it steeper or less steep than the graph $y=x$ ?

Results: (Fill in the blanks with steeper or less steep)
$y=5 x$ is steeper than $y=x$.
$y=0.4 x$ is less steep than $y=x$.
$y=0.08 x$ is less steep than $y=x$.
b) Compare graph no. 2, 4 and 5 with the graph $y=-x$.

Is it steeper or less steep than the graph $y=-x$ ?

Results: (Fill in the blanks with steeper or less steep)
$y=-5 x$ is steeper than $y=-x$.
$y=-2 x$ is steeper than $y=-x$.
$y=-0.3 x$ is less steep than $y=-x$.
c) Are there any difference between the shape of graph (no. 1, 3 and 6) with the graph (no. 2, 4 and 5)? Why? Difference in inclination
d) Does the value of $m$ affect the $x$-intercept or the $y$-intercept?

No
e) If the graph lies in quadrant I and III, what is the sign for $m$ value?
(Negative or positive) (Positive)
f) If the graph lies in quadrant II and IV, what is the sign for $m$ value?

(Negative or positive) (Negative)
g) Let say $m$ is positive. What will happen to the graph as the value of $m$ gets larger?


The line will approach $y$-axis, or it will be steeper
h) What will happen to the graph if the value of $m=0$ ? The line will be parallel to x-axis, called horizontal line

Verify your answer with the graphing calculator.

## CONCLUSION

Make a conclusion for the role of $\boldsymbol{m}$ in the graph $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}$.
i. If the value of $m$ increase, then the steepness of the line graph increase
ii. If the value of $m$ is positive, the graph lies on quadrant I_ and III
iii. If the value of $m$ is negative, the graph lies on quadrant II and IV

## ACTIVITY 1

Complete the table below with appropriate value of the gradient, $m$ the $x$-intercept, and the $y$-intercept using graphing calculator, given the function $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$
a) Press $Y=$
b) Key in the linear function given. Example, $y=x+5$
c) Press $X, T, \Theta, n \oplus 5$ GRAPH

| No | Function | Value of $\boldsymbol{m}$ | Sketch your graph | x-intercept | y-intercept |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | $y=5 x$ |  |  |  |  |
| 2. | $y=-5 x$ |  |  |  |  |
| 3. | $y=0.4 x$ |  |  |  |  |
| 4. |  |  |  |  |  |
| 5. |  |  |  |  |  |
| 6. |  |  |  |  |  |
|  |  |  |  |  |  |

## DISCUSSION

1. Compare your answers with your friends, and present your answers in the class.
a) Compare graph no. 1,3 and 6 with the graph $y=x$. Is it steeper or less steep than the graph $y=x$ ?

Results: (Fill in the blanks with steeper or less steep)

$$
\begin{aligned}
& y=5 x \text { is .................................... than } y=x . \\
& y=0.4 x \text { is ..................................than } y=x . \\
& y=0.08 x \text { is................................ than } y=x .
\end{aligned}
$$

b) Compare graph no. 2, 4 and 5 with the graph $y=-x$. Is it steeper or less steep than the graph $y=-x$ ?

Results: (Fill in the blanks with steeper or less steep)

$$
\begin{aligned}
& y=-5 x \text { is ..........................than } y=-x \\
& y=-2 x \text { is ............................ than } y=-x . \\
& y=-0.3 x \text { is............................. than } y=-x
\end{aligned}
$$

c) Are there any difference between the shape of graph (no. 1, 3 and 6) with the graph (no. 2, 4 and 5)? Why?
$\qquad$
d) Does the value of $m$ affect the $x$-intercept or the $y$-intercept?
$\qquad$
e) If the graph lies in quadrant I and III, what is the sign for $m$ value? (Negative or positive) $\qquad$

f) If the graph lies in quadrant II and IV, what is the sign for $m$ value?

g) Let say $m$ is positive. What will happen to the graph as the value of $m$ gets larger?
$\qquad$
h) What will happen to the graph if $m=0$ ?
$\qquad$ Verify your answer with the graphing calculator.

## CONCLUSION

Make a conclusion for the role of $\boldsymbol{m}$ in the graph $y=m x$.
i. If the value of $m$................... , then the steepness of the line graph $\qquad$
ii. If the value of $m$ is $\qquad$ the graph lies on quadrant $\qquad$ and $\qquad$
iii. If the value of $m$ is the graph lies on quadrant and $\qquad$

## ACTIVITY 2:

Complete the table below with appropriate value of the gradient, $m$, the value $c$, the $\boldsymbol{x}$-intercept, and the $\boldsymbol{y}$-intercept using graphing calculator for the function $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$
a) Press $Y=$
b) Key in the linear function given. Example, $\boldsymbol{y}=\boldsymbol{x}+5$
c) Press $X, T, \Theta, n \oplus 5$ GRAPH

| No | Function | Value of m | Value of c | Sketch your graph | $x$-intercept | $y$-intercept |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | $y=x+5$ | 1 | 5 |  | -5 | 5 |
| 2. | $y=x-3$ | 1 | -3 |  | 3 | -3 |
| 3. | $y=2 x-3$ | 2 | -3 |  | $\frac{3}{2}$ | -3 |
| 4. | $y=3 x-2$ | 3 | -2 |  | $\frac{2}{3}$ | -2 |


| No | Function | Value of m | Value of c | Sketch your graph | $x$-intercept | $y$-intercept |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5. | $y=-3 x-8$ | -3 | -8 |  | $\frac{-8}{3}$ | -8 |
| 6. | $y=-7 x$ | -7 | 0 |  | 0 | 0 |
| 7. | $y=8$ | none | 8 | $\ldots$  <br>   <br> $\ldots \ldots \ldots \ldots \ldots$  <br>   | none | 8 |

## SELF EXPLORATION

(use APPS Inequalz)

| No | Function | Value of $\boldsymbol{m}$ | Value of $\boldsymbol{c}$ | Sketch your graph | $\boldsymbol{x}$-intercept | $\boldsymbol{y}$-intercept |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8. | $x=2$ | undefined | none |  |  |  |
| 9 | $x=-5$ | undefined | none |  |  |  |

## DISCUSSION

1. Check the answer for each graph. (Compare and contrast)
2. Present your answers in the class. (Mathematical Communication)
a) From the table above, try to answer the questions below:
i. For the positive value of $c$, is the $y$-intercept above or below the $x$-axis? above
ii. For the negative value of $c$, is the $y$-intercept above or below the $x$-axis? below
iii. What is the $y$-intercept for the equation $y=5 x+2$ ?
$\underline{2}$
iv. What is the $y$-intercept for the equation $y=m x+c$ ? c value
b) Use the graphing calculator to draw the graphs $y=3 x+4$ and $y=3 x-4$. Describe and compare both graphs

They are parallel or the gradients are the same but the y-intercept is different
c) How does the graph $y=0.5, y=8$ and $y=11$ looks like? What are their common characteristics?

They are all horizontal lines
d) How does the graph $x=0.5, x=8$ and $x=11$ looks like? What are their common characteristics?

They are all vertical lines
3. Guess the equation for the graphs below for $y=m x+c$. Label the axis, and the $y$ intercept.

| a) <br> Equation: $\qquad$ <br> Value of $m$ ? $\qquad$ <br> Value of $c$ ? $\qquad$ | b) <br> Equation: $\qquad$ <br> Value of $m$ ? $\qquad$ <br> Value of $c$ ? $\qquad$ |
| :---: | :---: |
| Common rules: <br> 1) The value for $m$ is positive <br> 2) the value of $c$ shows the $y$-intercept |  |
| c) <br> Equation: $\qquad$ <br> Value of $m$ ? $\qquad$ <br> Value of $c$ ? $\qquad$ | d) <br> Equation: $\qquad$ <br> Value of $m$ ? $\qquad$ <br> Value of $c$ ? $\qquad$ |
| Common rules: <br> 1) The value for $m$ is negative <br> 2) the value of $c$ shows the $y$-intercept |  |

## ACTIVITY 2:

Complete the table below with appropriate value of the gradient, $\boldsymbol{m}$, the value $\boldsymbol{c}$, the $\boldsymbol{x}$-intercept, and the $\boldsymbol{y}$-intercept using graphing calculator for the function $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$
a) Press $Y=$
b) Key in the linear function given. Example, $\boldsymbol{y}=\boldsymbol{x}+5$
c) Press $X, T, \Theta, n \oplus 5$ GRAPH


| No | Function | Value of $\boldsymbol{m}$ | Value of $\boldsymbol{c}$ | Sketch your graph | $x$-intercept | $y$-intercept |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5. | $y=-3 x-8$ |  |  |  |  |  |
| 6. | $y=-7 x$ |  |  |  |  |  |
| 7. | $y=8$ |  |  |  |  |  |
|  |  |  |  |  |  |  |

## SELF EXPLORATION

(use APPS Inequalz)

| No | Function | Value of $m$ | Value of $\boldsymbol{c}$ | Sketch your graph | $x$-intercept | $y$-intercept |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8. | $x=2$ |  |  |  |  |  |
| 9 | $x=-5$ |  |  |  |  |  |
|  |  |  |  |  |  |  |

## DISCUSSION

1. Check the answer for each graph. (Compare and contrast)
2. Present your answers in the class. (Mathematical Communication)
a) From the table above, try to answer the questions below:
i. For the positive value of $c$, is the $y$-intercept above or below the $x$-axis?
$\qquad$
ii. For the negative value of $c$, is the $y$-intercept above or below the $x$-axis?
$\qquad$
iii. What is the $y$-intercept for the equation $y=5 x+2$ ?
$\qquad$
iv. What is the $y$-intercept for the equation $y=m x+c$ ?
$\qquad$
b) Use the graphing calculator to draw the graphs $y=3 x+4$ and $y=3 x-4$. Describe and compare both graphs
$\qquad$
c) How does the graph $y=0.5, y=8$ and $y=11$ looks like? What are their common characteristics?
$\qquad$
d) How does the graph $x=0.5, x=8$ and $x=11$ looks like? What are their common characteristics?
3. Guess the equation for the graphs below for $y=m x+c$. Label the axis, and the $y$ intercept.

| a) | b) |
| :---: | :---: |
|  |  |
| Equation: $\qquad$ <br> Value of $m$ ? $\qquad$ <br> Value of $c$ ? $\qquad$ | Equation: $\qquad$ <br> Value of $m$ ? $\qquad$ <br> Value of $c$ ? $\qquad$ |
| Common rules: <br> 1) $\qquad$ <br> 2) $\qquad$ |  |
| c) <br> Equation: $\qquad$ <br> Value of $m$ ? $\qquad$ <br> Value of $c$ ? $\qquad$ | d) <br> Equation: $\qquad$ <br> Value of $m$ ? $\qquad$ <br> Value of $c$ ? $\qquad$ |
| Common rules: <br> 1) $\qquad$ <br> 2) $\qquad$ |  |

## ACTIVITY 3:

1. Draw a pair of graph simultaneously in each question given in Table 1 with the aid of graphing calculator.
2. Write the point of intersection for each question. Press 2nd TRACE for [CALC] mode, choose [5:intersect], then press ENTER] three times (the guessing steps will help you to make conjecture), then intersection will appear.
3. The answers obtained from the graphing calculator might not be precise. You may use ZOOM and TRACE to get precise answers.
(Notes: You might want to rewrite the equations to standard form.)
Table 1

| $\text { a. } \begin{aligned} & y=2 x+3 \\ & y=2 x-3 \end{aligned}$ | $\text { b. } \begin{array}{ll} x-y=5 \\ & x-y=-10 \end{array}$ | $\text { c. } \begin{array}{ll}  & x+y=-1 \\ & x+20=-2 y \end{array}$ |
| :---: | :---: | :---: |
|  <br> $\ldots$ <br>  |  <br> $\ldots$ <br>  |   <br> $\ldots \ldots \ldots \ldots$  <br>   |
| Point of intersection? <br> (.....................) <br> - no intersection | Point of intersection? <br> (.....................) <br> - no intersection | Point of intersection? (......18,-19......) |
| $\text { d. } \quad \begin{aligned} & 2 y=-4 x+2 \\ & 2 y=x-16 \end{aligned}$ | $\text { e. } \begin{array}{ll} 2 y=-6 x+2 \\ & 4=y+3 x \end{array}$ | $\begin{array}{ll} \text { f. } & -6 x+3 y+15=0 \\ & -9 x-5 y+13=0 \end{array}$ |
|  <br> $\ldots$ <br> $\ldots \ldots \ldots$ |  <br> $\ldots \ldots \ldots \ldots$ <br> $\ldots$ <br>  <br>  |   <br> $\ldots$  <br>   |
| Point of intersection? <br> (......3.6.......-6.2.........) | Point of intersection? <br> (.. $\qquad$ <br> - no intersection | Point of intersection? <br> (......2.......-1.........) |

## DISCUSSION

1. Which pair of graphs in Table 1 is parallel?
$\qquad$ $a, b$ $\qquad$ and. $\qquad$
2. Why do you say so?

They have no point of intersection
3. Find the gradient of graph (e) in table above?
$2 y=-6 x+2 ; \quad$ gradient $=\underline{-3}$
$4=y+3 x ; \quad$ gradient $=\underline{-3}$
4. Based on the gradient above, what can you say about the gradient of two parallel lines?
a) They have the same gradient value
b) They will not intersect with each other
5. Without drawing any graph, determine whether $x+4 y=10$ and $x=y+1$ are parallel? They are NOT parallel
6. Why do you say so?

They have different gradient value

## CONCLUSION

1. When the two lines have the same gradient, then they are parallel
2. When two lines are parallel, they have the same gradient

## ACTIVITY 3:

1. Draw a pair of graph simultaneously in each question given in Table 1 with the aid of graphing calculator.
2. Write the point of intersection for each question. Press 2nd TRACE for [CALC] mode, choose [5:intersect], then press ENTER] three times (the guessing steps will help you to make conjecture), then intersection will appear.
3. The answers obtained from the graphing calculator might not be precise. You may use ZOOM and TRACE to get precise answers.
(Notes: You might want to rewrite the equations to standard form.)
Table 1

| $\text { a. } \begin{aligned} & y=2 x+3 \\ & y=2 x-3 \end{aligned}$ | b. $\begin{aligned} & x-y=5 \\ & x-y=-10 \end{aligned}$ | c. $\begin{aligned} & x+y=-1 \\ & x+20=-2 y \end{aligned}$ |
| :---: | :---: | :---: |
|   <br>   <br>   <br>   |  <br>  <br>  |  |
| Point of intersection? (.....................) | Point of intersection? <br> (.....................) | Point of intersection? <br> (...... , ......) |
| $\text { d. } \begin{aligned} & 2 y=-4 x+2 \\ & 2 y=x-16 \end{aligned}$ | $\begin{array}{ll} \text { e. } & 2 y=-6 x+2 \\ & 4=y+3 x \end{array}$ | $\text { f. } \quad \begin{aligned} & -6 x+3 y+15=0 \\ & -9 x-5 y+13=0 \end{aligned}$ |
|  |  <br> $\ldots$ |  |
| Point of intersection? (......... , ............) | Point of intersection? <br> (......... , ............) | Point of intersection? <br> (......... , ............) |

## DISCUSSION

1. Which pair of graphs in Table 1 is parallel?
$\qquad$ and $\qquad$
2. Why do you say so?
$\qquad$
3. Find the gradient of graph (e) in table above?
$2 y=-6 x+2 ; \quad$ gradient $=$ $\qquad$ $4=y+3 x ; \quad$ gradient $=$ $\qquad$
4. Based on the gradient above, what can you say about the gradient of two parallel lines?
a) They have the same $\qquad$ value
b) They will $\qquad$ with each other
5. Without drawing any graph, determine whether $x+4 y=10$ and $x=y+1$ are parallel?
$\qquad$
6. Why do you say so?
$\qquad$

## CONCLUSION

1. When the two lines have the $\qquad$ then they are $\qquad$
2. When two lines are $\qquad$ they have the same $\qquad$

## TOPIC <br> : STATISTICS

## LESSON OBJECTIVE :

Students will be able to...
i. Complete the class interval for a set of data given one of the class intervals.
ii. Construct a frequency table for a given set of data.
iii. Calculate the midpoint of a class.
iv. Draw a histogram based on the frequency table of a grouped data.
v. Draw the frequency polygon based on histogram or frequency table.

## EXAMPLE QUESTION :

The data in Diagram 1 shows the monthly pocket money, in RM, received by 40 students.

| 32 | 41 | 46 | 56 | 42 | 48 | 51 | 39 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 36 | 47 | 54 | 59 | 34 | 54 | 52 | 48 |
| 49 | 51 | 62 | 58 | 38 | 63 | 49 | 43 |
| 56 | 44 | 60 | 64 | 52 | 53 | 55 | 35 |
| 45 | 38 | 48 | 57 | 44 | 49 | 46 | 40 |

a) Based on the data in Diagram 1 and using a class interval of RM5, complete table 1 in the answer space.
b) From the table in a)
i) State the modal class
ii) Calculate the mean monthly pocket money of the students.
c) By using a scale of 2 cm to RM5 on the x-axis and 2 cm to 1 student on the $y$-axis, draw a histogram and frequency polygon based on the data.

| Pocket money(RM) | Frequency | Midpoint |
| :---: | :---: | :---: |
| $31-35$ |  |  |
| $36-40$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Table 1

Solution

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press STAT <br> Then, choose 1: Edit, and press <br> ENTER <br> Key in all the data under L1. |  | Reset All RAM before start. <br> Press 2nd $\dagger$, <br> choose 7:Reset <br> 1: All RAM <br> 2 : Reset <br> ENTER |
|  | 32 41 <br> 36 47 <br> 49 51 <br> 56 44 <br> 45 38 | 56 42 48 <br> 59 34 54 <br> 58 38 63 <br> 64 52 53 <br> 57 44 49 | 39 48 43 35 40 |
| 2 | Press 2nd YY for [STAT PLOT] Then, choose 1: Plot, and press ENTER |  |  |
| 3 | Under Plot1, move cursor and choose On by pressing $\square$ ENTER Choose Type: Ifrofor histogram. <br> Xlist: L1 <br> Freq: 1 |  | Xlist: L1 refers to the placement for the list of the data. <br> Freq: 1 refers to the frequency for each data is counted. |


| 4 | Press WINDOW and key in the following setting | $\begin{aligned} & \text { WINDUW } \\ & \text { Xmin=31 } \\ & \text { Xax=66 } \\ & \text { Ymal=5 } \\ & \text { Ymin=0 } \\ & \text { Ymax } \\ & \text { Yscl=1 } 0 \\ & \text { Xres=1 } \\ & \hline \end{aligned}$ | - Xmin is the minimum value of the data <br> - Xmax is the maximum value of the data +1 <br> - Xscl is the Class Size |
| :---: | :---: | :---: | :---: |
| $i$. $i i$. | Questions for discussion <br> Why the maximum value of the <br> How to determine the class size, | Xmax must be added 1 ? | more? |
| 5 | Press GRAPH |  |  |
| 6 | Press TRACE <br> Use the right $\square$ and left $\square$ cursor to move from one class interval to another class interval and get the frequency from graph. |  | - From TRACE, the class interval and the frequency can be gained and recorded. <br> - TRACE will show the : <br> a) Minimum (lower limit) and maximum (upper limit) value of each class, and <br> b) the frequency of each class (eg-class 31-35, freq = 3) |

## Question a)

Based on the data in Diagram 1 and using a class interval of RM5, complete table 1 in the answer space.

Answer:

| Pocket money (RM) | Frequency | Mid-point |
| :---: | :---: | :---: |
| $31-35$ |  |  |
| $36-40$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Questions for discussion

i. How to determine the middle point?
ii. What is the definition of mod?
iii. How to determine the modal class?

## Question b)

From the table in a)
i) State the modal class

Answer: $\qquad$

## Questions for discussion

i. Can you explain the differences between histogram and bar chart?
ii. What is the effect on the histogram if using different class intervals?
iii. What must you do to adjust the frequency table for drawing a frequency polygon?


| 9 | Press GRAPH |  |  |
| :---: | :---: | :---: | :---: |
| 10 | To display ONLY for Frequency <br> Polygon; <br> Press 2nd $Y \neq$ for [STAT PLOT] <br> Choose 1: Plot1, then, press ENTER <br> Move the cursor, and choose Off, then press ENTER <br> Press GRAPH |   |  |

Questions for discussion
i. What is wrong with the graph displayed?
ii. How should you adjust the display of the window?

WIFCIOW
品iに
x m $\mathrm{x}=\square$
$\therefore=0.1=5$

$\mathrm{Max}=1 \mathrm{Q}$
$\mathrm{YE} \mathrm{c}=1$
Kres=1

| 11 | To calculate the MEAN, <br> Press 2nd STAT. <br> Move the cursor and choose <br> MATH <br> Choose mean( or click for 3 <br> Key in mean $\left(L_{3}, L_{2}\right)$, <br> Then, press ENTER | NAME 0 OPS MHTH $1: L 1$ $2: L 2$ $3: L 3$ $4: L 4$ $5: L 5$ $6: L 6$ $7: L$  <br> mean(L3,L2) | meanく <br> mean(L3,L2) <br> - Method for key in the $L_{3}$ and $L_{2}$ is by pressing the 2nd 3 and 2nd 2 |
| :---: | :---: | :---: | :---: |
| Question b) |  |  |  |
| From | the table in a) <br> ii) Calculate the mean month <br> Answer: $\qquad$ | cket money of the student |  |

## TEACHER'S NOTE

1. The time taken by 100 students to complete the jogathon in SMK Bestari is recorded in the table below.

| 30 | 38 | 41 | 36 | 26 | 33 | 35 | 38 | 43 | 46 | 36 | 38 | 41 | 36 | 50 | 40 | 47 | 36 | 34 | 37 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41 | 37 | 31 | 37 | 47 | 41 | 38 | 37 | 35 | 26 | 50 | 37 | 40 | 35 | 45 | 38 | 43 | 40 | 43 | 38 |
| 34 | 46 | 36 | 40 | 41 | 37 | 33 | 28 | 36 | 30 | 37 | 44 | 39 | 41 | 34 | 38 | 34 | 39 | 33 | 43 |
| 36 | 46 | 45 | 36 | 33 | 38 | 39 | 32 | 38 | 40 | 29 | 49 | 43 | 36 | 44 | 47 | 38 | 37 | 41 | 47 |
| 43 | 37 | 35 | 45 | 37 | 41 | 44 | 40 | 46 | 37 | 38 | 45 | 32 | 49 | 40 | 27 | 38 | 47 | 49 | 40 |

a) Based on the given data, complete the table.
b) Construct a histogram and frequency polygon based on the data.
c) State the modal class, and find the mean.

## SOLUTION:

| Time (minutes) | Frequency | Midpoint |
| :---: | :---: | :---: |
| $20-24$ | 0 | 22 |
| $25-29$ | 5 | 27 |
| $30-34$ | 13 | 32 |
| $35-39$ | 39 | 37 |
| $40-44$ | 25 | 42 |
| $45-49$ | 16 | 47 |
| $50-54$ | 2 | 52 |
| $55-59$ | 0 | 57 |




Modal class = 35-39

1. The time taken by 100 students to complete the jogathon in SMK Bestari is recorded in the table below.

| 30 | 38 | 41 | 36 | 26 | 33 | 35 | 38 | 43 | 46 | 36 | 38 | 41 | 36 | 50 | 40 | 47 | 36 | 34 | 37 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41 | 37 | 31 | 37 | 47 | 41 | 38 | 37 | 35 | 26 | 50 | 37 | 40 | 35 | 45 | 38 | 43 | 40 | 43 | 38 |
| 34 | 46 | 36 | 40 | 41 | 37 | 33 | 28 | 36 | 30 | 37 | 44 | 39 | 41 | 34 | 38 | 34 | 39 | 33 | 43 |
| 36 | 46 | 45 | 36 | 33 | 38 | 39 | 32 | 38 | 40 | 29 | 49 | 43 | 36 | 44 | 47 | 38 | 37 | 41 | 47 |
| 43 | 37 | 35 | 45 | 37 | 41 | 44 | 40 | 46 | 37 | 38 | 45 | 32 | 49 | 40 | 27 | 38 | 47 | 49 | 40 |

a) Based on the given data, complete the table.
b) Construct a histogram and frequency polygon based on the data.
c) State the modal class, and find the mean.

| Time (minutes) | Frequency | Midpoint |
| :---: | :---: | :---: |
| $20-24$ |  |  |
| $25-29$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

```
TOPIC : STATISTICS
```

LESSON OBJECTIVE :

Students will be able to...
i. Construct the cumulative frequency table for grouped data.
ii. Draw the ogive for grouped data.
iii. Determine the range of a set of data.
iv. Determine the median, the first quartile, the third quartile, and the inter quartile range, from the ogive.

## EXAMPLE QUESTION :

The data in Diagram 1 shows the monthly pocket money, in RM, received by 40 students.

| 32 | 41 | 46 | 56 | 42 | 48 | 51 | 39 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 36 | 47 | 54 | 59 | 34 | 54 | 52 | 48 |
| 49 | 51 | 62 | 58 | 38 | 63 | 49 | 43 |
| 56 | 44 | 60 | 64 | 52 | 53 | 55 | 35 |
| 45 | 38 | 48 | 57 | 44 | 49 | 46 | 40 |
|  |  |  |  | Diagram 1 |  |  |  |

a) Based on the data in Diagram 1 and using a class interval of RM5, complete table 2 in the answer space.
b) By using a scale of 2 cm to RM5 on the $x$-axis and 2 cm to 10 students on the $y$-axis, draw an ogive.
c) From the table in a),
i) Find the median,
ii) Determine the range of the data
iii) Calculate the inter quartile range

| Pocket Money (RM) | Frequency | Upper Boundary | Cumulative Frequency |
| :---: | :---: | :---: | :---: |
| $26-30$ | 0 |  |  |
| $31-35$ | 3 |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

Table 2

## Solution

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press STAT, choose 1: Edit, then press ENTER |   |  |

Questions for discussion.
i. From previous knowledge, can you fill in the class intervals and the frequencies?
ii. What is the definition of a boundary?
iii. How to determine the upper boundary?
iv. What is the definition of the cumulative frequency?
v. How to determine the cumulative frequency?
vi. What is the definition of range?
vii. How to calculate the range?

## Question a)

a) Based on the data in Diagram 1 and using a class interval of RM5, complete table 2 in the answer space.

| Pocket Money (RM) | Frequency | Upper Boundary | Cumulative Frequency |
| :---: | :---: | :---: | :---: |
| $26-30$ | 0 |  |  |
| $31-35$ | 3 |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Question c

ii) Determine the range of the data


| 2 | Key in all the data from upper boundary under L1 and cumulative frequency under L2. |  |  |
| :---: | :---: | :---: | :---: |
| 3 | Press 2nd Y $Y$ for [STAT PLOT]. <br> Then, choose 1: Plot and press <br> ENTER |  |  |
| 4 | Under Plot1, move the cursor and choose On <br> Press ENTER <br> choose type: Lـ几 for ogive. <br> Then, press ENTER <br> Key in for Xlist: L1 <br> Key in for Ylist: L2 |  | Xlist refers to the data to be plotted with respect to $x$-axis <br> Ylist refers to the data to be plotted with respect to $y$-axis |



$$
\begin{aligned}
& \text { Question c (iii) } \\
& \qquad \begin{aligned}
\text { When } y & =\frac{1}{4} \times 40 \\
& =10
\end{aligned}
\end{aligned}
$$

Therefore, first quartile is:
Answer: .....................
When $y=\frac{3}{4} \times 40$

$$
=30
$$

Therefore, first quartile is:
Answer: ......................

Therefore, inter quartile range is =

$\square$


TEACHER'S NOTE
2.


The histogram in Diagram 2 shows the mass (in kg) for 25 parcels.
(a) Based on the histogram, complete Table 3.
(b) By using a scale of 2 cm to 10 kg on the horizontal axis and 2 cm to 5 parcels on the vertical axis draw an ogive based on Table 3.
(c) From your graph, find
(i) the median of the mass,
(ii) the range of the data
(ii) the inter quartile range

| Mass (kg) | Frequency | Upper <br> boundary | Cumulative <br> frequency |
| :---: | :---: | :---: | :---: |
| $5-9$ | 0 | 9.5 | 0 |
| $10-14$ |  |  |  |
| $15-19$ |  |  |  |
| $20-24$ |  |  |  |
| $25-29$ |  |  |  |
| $30-34$ |  |  |  |

Table 3

## SOLUTION:

(a)

| Mass (kg) | Frequency | Upper <br> boundary | Cumulative <br> frequency |
| :---: | :---: | :---: | :---: |
| $5-9$ | 0 | 9.5 | 0 |
| $10-14$ | 3 | 14.5 | 3 |
| $15-19$ | 4 | 19.5 | 7 |
| $20-24$ | 5 | 24.5 | 12 |
| $25-29$ | 10 | 29.5 | 22 |
| $30-34$ | 3 | 34.5 | 25 |

Table 3

Solution for question $b$ ) and c), refer steps and procedures in example question

:
2.


The histogram in Diagram 2 shows the mass (in kg) for 25 parcels.
(a) Based on the histogram, complete Table 3.
(b) By using a scale of 2 cm to 10 kg on the horizontal axis and 2 cm to 5 parcels on the vertical axis draw an ogive based on Table 3.
(c) From your graph, find
(i) the median of the mass,
(ii) the inter quartile range

| Mass (kg) | Frequency | Upper <br> boundary | Cumulative <br> frequency |
| :---: | :---: | :---: | :---: |
| $5-9$ | 0 | 9.5 | 0 |
| $10-14$ |  |  |  |
| $15-19$ |  |  |  |
| $20-24$ |  |  |  |
| $25-29$ |  |  |  |
| $30-34$ |  |  |  |

Table 3

## SOLUTION :

(a)

| Mass (kg) | Frequency | Upper <br> boundary | Cumulative <br> frequency |
| :---: | :---: | :---: | :---: |
| $5-9$ | 0 | 9.5 | 0 |
| $10-14$ |  |  |  |
| $15-19$ |  |  |  |
| $20-24$ |  |  |  |
| $25-29$ |  |  |  |
| $30-34$ |  |  |  |

(b)
(c)

## TOPIC : STATISTICS

## LESSON OBJECTIVES :

Students will be able to...
i. Understand and use the concept of class interval
ii. Discuss the effect of the size of class interval on the accuracy of the mean for a specific set of grouped data
iii. Interpret information from a given histogram

## EXAMPLE QUESTION :

The following table illustrates the number of car accidents that have occurred on a dangerous stretch of a highway over the past 15 years.

| Year | No. of Accidents |
| :---: | :---: |
| 1992 | 20 |
| 1993 | 22 |
| 1994 | 21 |
| 1995 | 19 |
| 1996 | 24 |
| 1997 | 27 |
| 1998 | 21 |
| 1999 | 30 |
| 2000 | 31 |
| 2001 | 22 |
| 2002 | 32 |
| 2003 | 37 |
| 2004 | 25 |
| 2005 | 30 |
| 2006 | 15 |

(a) How can this data be manipulated to suggest that the number of accidents that occur on this stretch highway has increased since 1992? Create a histogram that shows such an increase.
(b) How to alter the horizontal scale of this histogram to create an illustration that suggests that the number of accidents that occur has decreased since 1992 (or remained relatively constant)?
(c) As a driver who frequently travels on this stretch of highway, how do you think that data should be represented such that you see an accurate portrayal of the number of accidents that have occurred?

## Solution:



## Question a)

How can this data be manipulated to suggest that the number of accidents that occur on this stretch highway has increased since 1992? Create a histogram that shows such an increase.

Fill in the WINDOW setting and sketch your histogram.


## Question b)

How to alter the horizontal scale of this histogram to create an illustration that suggests that the number of accidents that occur has decreased since 1992 (or remained relatively constant)?

Fill in the WINDOW setting and sketch your histogram.

| $\begin{gathered} \text { WIGOW } \\ \text { Mir= } \\ \text { max= } \\ \text { mir= } \\ \text { max= } \\ \text { Xres= } \end{gathered}$ |
| :---: |

$\square$

## Questions for discussion

i. Explain how you had changed the WINDOW setting such that the graph looks different?
ii. What interpretation can you tell on histogram in a) and histogram in b)?
iii. Do you think that these two graphs accurately tell you the actual situation considering the number of accidents on this dangerous stretch of highway from 1992 to 2006? Explain.

## Question c)

As a driver who frequently travels on this stretch of highway, how do you think that data should be represented such that you see an accurate portrayal of the number of accidents that have occurred?


## Questions for discussion

i. How does changing of $\mathbf{X s c l}$ (or the size of class interval) affect the histogram?
$\square$
ii. What would you consider before you decide on your value of Xscl?

iii. Why does the frequency of the class intervals change when the size of the class interval change?

iv. As a driver who frequently travels on this stretch of highway, how do you think the data should be represented such that you see an accurate picture of the number of accidents that have occurred?

v. How do you make histogram represent its data more accurately?


## Self exploration

Show the histogram that you will draw to accurately know the actual situation on the number of accidents on that highway.

Fill in the WINDOW setting and sketch your histogram.


In conclusion, how would you determine a suitable class interval for a given set of data?

## TOPIC : TRIGONOMETRY 2

LESSON OBJECTIVE :
Students will be able to...
i. Draw the graphs of sine, cosine, and tangent for angles (between $0^{\circ}$ and $360^{\circ}$ ).


## EXAMPLE QUESTION :

Which of the following represents the graph of $y=\cos 2 x$ for $0^{\circ} \leq x \leq 360^{\circ}$ ?
(SPM 2005)

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press MODE-key and choose DEGREE <br> Press ENTER-key |  | - The unit we use in this example is degree $0^{\circ} \leq x \leq 360^{\circ}$ |
| 2 | Press WINDOW-key and key in the figure: $\text { for } 0^{\circ} \leq x \leq 360^{\circ}$ |  | - Key in the scale of 1 unit of the graph of $y$-axis and $x$ axis (Xscl and Yscl) <br> - Xmin, Xmax, Ymin, and Ymax are the range of the graph |
| 3 | Press Y $Y$, and key in the equation: $\begin{gathered} y=\cos 2 x \\ Y=\cos 2 X, T, \Theta, n \end{gathered}$ | $\mid{ }^{10 t 1}$ Plot2 P1ot3 <br> $Y_{1}$ <br> $Y_{2}$ <br> $Y_{2}=$ <br> $Y_{3}=$ <br> $Y_{4}=$ <br> $Y_{5}=$ <br> $Y_{6}=$ <br> $Y_{7}=$ |  |
| 4 | Press GRAPH-key |  | - The graph will be plotted according to the range fixed in step 2 (Xmin, Xmax, Ymin, and Ymax). <br> - Maximum value of $y$-axis is 1 <br> - Minimum value of $y$-axis is -1 <br> - Maximum value of $x$-axis is 360 degree <br> - Minimum value of $x$-axis is 0 degree |
| Question for discussion. |  |  |  |
| Compare the result with the graph of $y=\cos x$. Do you see any difference? |  |  |  |

## ACTIVITY 1

Use a graphing calculator to draw a graph of each function and then complete the table below


| NO | TRIGONOMETRIC FUNCTION |
| :---: | :---: | :---: |
| 1 | $y=\sin x$ |

## ACTIVITY 1

Use a graphing calculator to draw a graph of each function and then complete the table below


| NO | TRIGONOMETRIC FUNCTION | GRAPH |
| :---: | :---: | :---: |
| 1 | $y=\sin x$ |  |
| 2 | $y=\sin 2 x$ |  |
| 3 | $y=\sin 3 x$ |  |

## ACTIVITY 2

DRAW THE GRAPH THAT REPRESENTS THE TRIGONOMETRIC FUNCTION GIVEN.
(YOU MAY NEED TO HAVE THE SUITABLE WINDOW SETTING)

| NO | TRIGONOMETRIC FUNCTION | GRAPH |
| :---: | :---: | :---: |
| 1 | $y=\cos x$ for $0^{\circ} \leq x \leq 180^{\circ}$ |  <br> WINDOW SET: $\begin{aligned} & X \text {-scale } \rightarrow 30^{\circ} \quad Y \text {-scale } \rightarrow 1 \\ & Y \text { min } \rightarrow-1 \text { Ymax } \rightarrow 1 \\ & X \text { min } \rightarrow 0^{\circ} \quad \text { Xmax } \rightarrow 180^{\circ} \end{aligned}$ |
| 2 | $y=\sin 2 x$ for $0^{\circ} \leq x \leq 180^{\circ}$ | WINDOW SET: $\begin{aligned} & X \text {-scale } \rightarrow 30^{\circ} Y \text {-scale } \rightarrow 1 \\ & Y \text { min } \rightarrow 1 Y \operatorname{Yax} \rightarrow 1 \\ & X \text { min } \rightarrow 0^{\circ} \quad \text { Xax } \rightarrow 180^{\circ} \end{aligned}$ |
| 3 | $y=\sin x$ for $0^{\circ} \leq x \leq 180^{\circ}$ |  <br> WINDOW SET: $\begin{aligned} & X \text {-scale } \rightarrow 30^{\circ} Y \text {-scale } \rightarrow 1 \\ & Y \text { min } \rightarrow 1 Y \max \rightarrow 1 \\ & X \min \rightarrow 0^{\circ} \quad \text { max } \rightarrow 180^{\circ} \end{aligned}$ |
| 4 | $y=\tan x$ for $0^{\circ} \leq x \leq 180^{\circ}$ |  <br> WINDOW SET: $\begin{aligned} & X \text {-scale } \rightarrow 90^{\circ} Y \text {-scale } \rightarrow 1 \\ & Y \text { min } \rightarrow-5 \text { Ymax } \rightarrow 5 \\ & X \text { min } \rightarrow 0^{\circ} \text { Xmax } \rightarrow 180^{\circ} \end{aligned}$ |
| 5 | $y=\cos 2 x$ for $0^{\circ} \leq x \leq 360^{\circ}$ |  <br> WINDOW SET: $\begin{aligned} & X \text {-scale } \rightarrow 90^{\circ} \quad Y \text {-scale } \rightarrow 1 \\ & Y \text { min } \rightarrow 1 \text { Ymax } \rightarrow 1 \\ & X \text { min } \rightarrow 0^{\circ} \quad \text { Xmax } \rightarrow 360^{\circ} \end{aligned}$ |

## ACTIVITY 2

DRAW THE GRAPH THAT REPRESENT THE TRIGONOMETRIC FUNCTION GIVEN
(YOU MAY NEED TO HAVE THE SUITABLE WINDOW SETTING)

| NO | TRIGONOMETRIC FUNCTION |  |
| :---: | :--- | :--- |
| 1 | $y=\cos x$ for $0^{\circ} \leq x \leq 180^{\circ}$ |  |
| 2 | $y=\sin 2 x$ for $0^{\circ} \leq x \leq 180^{\circ}$ |  |
| 3 | $y=\sin x$ for $0^{\circ} \leq x \leq 180^{\circ}$ |  |
| 5 | $y=\tan x$ for $0^{\circ} \leq x \leq 180^{\circ}$ |  |
| 4 |  |  |
|  |  |  |

1 Which of the following graph represent $y=\cos 2 x$ for $0^{\circ} \leq x \leq 360^{\circ}$ ?
SPM 2006

A


C


B


D


2 Which of the following graph represent $y=\cos 2 x$ for $0^{\circ} \leq x \leq 360^{\circ}$ ?


B


D
C



TOPIC : GRAPH OF FUNCTIONS 2

## LESSON OBJECTIVE :

Students will be able to...
i. Shade the regions representing the inequalities

## APPLICATION : INEQUALZ

EXAMPLE QUESTION : Shade the region representing the inequalities, $y \leq x+3$

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | 2nd + for [MEM] mode, <br> Press 7:Reset, <br> 2:Defaults, <br> 2:Reset. <br> Then, 'Defaults Set' appear | MEMEX <br> 1: Heout <br> 2: Mem Mamt Del... <br> SClear Entries <br> 4: CirAllists <br> :Archive <br> g:DrArchive <br> Cureset... <br> RFII ARCHIVE RLL <br> 1:H11 RAM... <br> z\#Default..... <br> RESET DEFFIULTE <br> 1:No <br> zareset. <br> TI- B 4 Flus siluer Edition <br> Defaults set | MAKE SURE MEM IS RESET TO DEFAULT |
| 2 | Press APPS; <br> Scroll down until find :Inequalz. <br> ENTER |  | - The applications (apps) consisting extra programs, and need to be predownloaded before can be used. |
| 3 | Press $Y$ |  | - When the cursor is on the ' $=$ ' sign, the inequalities signs appear at the bottom of the screen |


| 4 | Key in the linear inequalities, $y \leq x+3$ <br> Press ALPHA [F3], to select <br> $\leq$. Key in $\boldsymbol{x}+3$ <br> ENTER |  |  |
| :---: | :---: | :---: | :---: |
| 5 | Press GRAPH |  | - The region representing the inequalities will be shaded |

## Questions for discussion.

i. What do you notice the kind of line of the graph? Dashed or solid? What does it means by having dashed or solid line?
ii. What do you think will happen if the inequality is changed to $\boldsymbol{y}<x+\mathbf{3}$ ?
iii. Do you see the difference between the equation $\boldsymbol{y}=\boldsymbol{x}+3$, with the inequalities $\boldsymbol{y}<x+3$, $y \leq x+3, y>x+3$, or $y \geq x+3$ ?
iv. Let say, to key in another inequality, $y \leq 5 x$ what is the operational procedure?


ACTIVITY 1

| No | Inequalities | Sketch your shaded region |
| :---: | :---: | :---: |
| 1. | $y \leq 5 x$ |  |
| 2. | $y \geq 5 x$ |  |
| 3. | $y<4$ |  |
| 4. | $y>4$ |  |
| 5. | $y \leq 3 x+8$ |  |

## Discussion:

(a) What do you notice, the difference between the shaded regions in each question 1 and 2? The first one shaded to the right and the other one shaded to the left
(b) What do you notice, the difference between the lines in question 3 and 4?

The first one shaded to the bottom and the other one shaded up
(c) Can you make general conclusion for what you have discover?

The $(>, \geq)$ signs will always shaded upper part of $y$-axis, and $(<, \leq$.) signs will always shaded lower part of $y$-axis of the function

| No | Inequalities | Sketch your shaded region |
| :---: | :---: | :---: |
| 1. | $y \leq 5 x$ |  |
| 2. | $y \geq 5 x$ |  |
| 3. | $y<4$ |  |
| 4. | $y>4$ |  |
| 5. | $y \leq 3 x+8$ |  |

## Discussion:

(a) What do you notice, the difference between the shaded regions in each question 1 and 2?
(b) What do you notice, the difference between the lines in question 3 and 4?
(c) Can you make general conclusion for what you have discover?

TOPIC : GRAPH OF FUNCTIONS 2

## LESSON OBJECTIVE :

Students will be able to...
i. Determine the region which satisfies two or more simultaneous linear inequalities.

## APPLICATION : INEQUALZ

EXAMPLE QUESTION : Shade the region representing the inequalities, $y \leq x+3, x \leq 4$, and $y>x-2$

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | 2nd flor [MEM] mode, <br> Press 7:Reset, <br> 2:Defaults, <br> 2:Reset. <br> Then, 'Defaults Set' appear |  | MAKE SURE MEM IS RESET TO DEFAULT; <br> 7:RESET <br> MAKE SURE ALSO, ALL ENTRIES <br> ARE GONE <br> 3:CLEAR ENTRIES <br> RESET ALL RAM ALSO CAN BE DONE |
| 2 | Press APPS-key; <br> Scroll down until find :Inequalz. <br> ENTER |  | - The applications (apps) consisting extra programs, and need to be predownloaded before can be used. |
| 3 | Press $Y=$-key |  | - When the cursor is on the = sign, the inequalities sign appear at the bottom of the screen |


| 4 | Key in the linear inequalities, $\begin{array}{ll}  & y \leq x+3 \\ \text { and } & y>-x-2 \end{array}$ |  | - Same method as before. <br> - Include all Y's inequalities |
| :---: | :---: | :---: | :---: |
| 5 | Move the cursor to the topleft, and press ENTER <br> Key in the linear inequalities, $x \leq 4$ |  | - The screen will be shifted to $X$ 's equations |
| 6 | Press GRAPH |  | - The region representing the inequalities will be shaded |
| 7 | Press ALPHA Y\# for [F1] mode <br> Select 1:ineq intersection |  |  |


| No | Inequalities | Sketch your shaded region |
| :---: | :---: | :---: |
| 1. | $\begin{gathered} y<x+5 \\ y \geq-2 x \end{gathered}$ |  |
| 2. | $\begin{gathered} y \leq x+2 \\ y \geq \frac{1}{2} \\ x<2 \end{gathered}$ |  |
| 3. | $\begin{gathered} y \leq 5-x \\ x \geq-4 \\ x<y-3 \end{gathered}$ <br> (Hint: re-arrange the inequalities) |  |
| 4. | $\begin{gathered} x+y \geq 3 \\ y<8 \\ x \leq 2 \end{gathered}$ |  |
| 5. | $\begin{aligned} & y \geq \frac{5}{6} x-5 \\ & y<-\frac{2}{3} x+4 \\ & y \geq-2 x+4 \end{aligned}$ |  |

## ACTIVITY 1

| No | Inequalities | Sketch your shaded region |
| :---: | :---: | :---: |
| 1. | $\begin{gathered} y<x+5 \\ y \geq-2 x \end{gathered}$ |  |
| 2. | $\begin{gathered} y \leq x+2 \\ y \geq \frac{1}{2} \\ x<2 \end{gathered}$ |  |
| 3. | $\begin{gathered} y \leq 5-x \\ x \geq-4 \\ x<y-3 \end{gathered}$ <br> (Hint: re-arrange the inequalities) |  |
| 4. | $\begin{gathered} x+y \geq 3 \\ y<8 \\ x \leq 2 \end{gathered}$ |  |
| 5. | $\begin{aligned} & y \geq \frac{5}{6} x-5 \\ & y<-\frac{2}{3} x+4 \\ & y \geq-2 x+4 \end{aligned}$ |  |

ACTIVITY 2 - SPM QUESTIONS
Sketch the shaded region

| n <br> N <br> N <br>  | $y \leq 2 x+8, y \geq x \text { and } y<8$  | - - - - - |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { n } \\ & 0 \\ & \text { N } \\ & \text { i } \\ & \text { n } \end{aligned}$ | $y \geq-2 x+10, x<5 \text { and } y \leq 10$  |  |
| $\begin{aligned} & \text { N} \\ & \text { O } \\ & \text { N } \\ & i \end{aligned}$ | $y>2 x-4, y<-x+6 \text { and } x>1$  |  |

ACTIVITY 2 - SPM QUESTIONS
Sketch the shaded region

| m O N N n | $y \leq 2 x+8, y \geq x \text { and } y<8$  |  |
| :---: | :---: | :---: |
| $$ | $y \geq-2 x+10, x<5 \text { and } y \leq 10$  |  |
| $\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { N } \\ & i \end{aligned}$ | $y>2 x-4, y<-x+6 \text { and } x>1$  |  |

```
TOPIC : MATRICES
```


## LESSON OBJECTIVE :

Students will be able to...
i. Understand and use the concept of matrices

EXAMPLE QUESTION : Key in the elements of matrix $A$ and matrix $B$ such that;

$$
A=\left(\begin{array}{ccc}
5 & 0 & 3 \\
7 & 9 & 10 \\
2 & -2 & 1
\end{array}\right), B=\left(\begin{array}{ccc}
-3 & 15 & -4 \\
4 & 0 & 8 \\
2 & 1 & 4
\end{array}\right)
$$

Then, find:

1) the sum of the two matrices
2) the difference of the two matrices
3) the multiplication of the two matrices

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press 2nd [x-1 for [MATRIX] mode <br> Choose EDIT 1: [ A ] ENTER |  | Make sure to clear the memory before start. <br> Step: Press 2nd $⿴$, <br> choose 7: Reset <br> 1 : All RAM <br> 2 : Reset <br> ENTER |
| 2 | Press 3 ENTER 3 ENTER <br> Press 5 ENTER, 0 ENTER, 3 <br> ENTER <br> 7 ENTER, 9 ENTER, <br> 10 ENTER <br> (2NTER, (-) 2 ENTER, 1 ENTER |  | - Setting the matrix order as the question asked, which is $3 \times 3$ <br> - Then, key in the data starting with the $1^{\text {st }}$ column until the end. |


| 3 | Repeat step 1, choose EDIT 2: [ B ] <br> ENTER <br> Follow the same procedure to key in the data for Matrix B | $\left.\begin{array}{cccc}1 R T R I X[B] & 3 \times 3 \\ -3 & 15 & -4 & 3 \\ 4 & 0 & 4 & 3 \\ 2 & 1 & & \\ & & \\ 3,3=4 & & \\ 3\end{array}\right]$   | - To edit the element of the matrix, simply move the cursor and redo the entry. |
| :---: | :---: | :---: | :---: |
| 4 | To find the sum of two matrices: <br> Press 2nd MODE for [QUIT] mode and return to Home Screen <br> Press 2nd x-1 for [MATRIX] mode <br> Choose 1:[A] 3×3 ENTER <br> Press $\dagger$ to perform additional operation <br> Press 2nd $x^{-1}$ for [MATRIX] mode <br> Choose 2:[B] 3×3 ENTER <br> Press ENTER for answer | [H] <br> $[\mathrm{H}]+[\mathrm{B}]$ | - The saved elements for each matrix is displayed <br> - Use the same procedure to find the SUBTRACTION and MULTIPLICATION. <br> - Press CLEAR, then follow step 4 for subtraction and multiplication. <br> Question 1 <br> The sum of the two matrices $\square$ <br> Question 2 <br> The difference of the two matrices <br> Question 3 <br> the multiplication of the two matrices |

## ACTIVITY 1

The table below shows the marks obtained by Ahmad in the February and March tests. Each of the test contributed $50 \%$ of the total marks for the first term.

| FEBRUARY |  | MARCH |  |
| :---: | :---: | :---: | :---: |
| Malay language | 32 | Malay language | 41 |
| English | 37 | English | 27 |
| Mathematics | 35 | Mathematics | 37 |
| Science | 20 | Science | 31 |

(a) Present the above information in matrix form.
(b) Calculate the total marks obtained for each subject in the first term.

## Solution:

Press 2nd [x-1 for [MATRIX] mode
EDIT 1: [A] ENTER
Press 4 ENTER 1 ENTER to set the matrix order;
Key in the mark for February:
(3) 2 ENTER, 2 [ENTER, 35 ENTER, 20 EENTER


Press 2nd x-1 for [MATRIX] mode
EDIT2: [B] ENTER
Press 4 ENTER 1 ENTER to set the matrix order;
Key in the mark for March:
(4) 1 EENTER, 23 ENTER, 3 [ENTER, 3 (ENTER

| MATRIX[B] $4 \times 1$ |  |
| :---: | :---: |
| [ 41 |  |
| [ 27 |  |
| [ $\boldsymbol{F}^{1}$ |  |
| $4,1=31$ |  |

Press 2nd MODE for [QUIT] mode and return to Home Screen
Press 2nd x-1 for [MATRIX] mode
Choose NAME
1: [A] ENTER


Press 2nd x-1 for [MATRIX] mode
Press $\dagger$ key

Choose NAME
1: [B] ENTER
ENTER

## ACTIVITY 1

The table below shows the marks obtained by Ahmad in the February and March tests. Each of the test contributed 50\% of the total marks for the first term.

| FEBRUARY |  | MARCH |  |
| :---: | :---: | :---: | :---: |
| Malay language | 32 | Malay language | 41 |
| English | 37 | English | 27 |
| Mathematics | 35 | Mathematics | 37 |
| Science | 20 | Science | 31 |

(a) Present the above information in matrix form.
(b) Calculate the total marks obtained for each subject in the first term.

## Solution:

Given matrix $A$ and $B$ as below:

$$
A=\left(\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
10 & 3 \\
1 & 7
\end{array}\right)
$$

Find
a) $A B$
b) $B A$

DISCUSSION:

- What can you say about the relation between AB and BA?


## Solution:

Key in the data for matrix $A$.

Repeat the step above to enter the value in matrix $B$

Press 2nd MODE for [QUIT] mode and return to Home Screen

Press 2nd $x-1$ for [MATRIX] mode
Choose NAME
1: [ A ] ENTER
Press $\times$ key
Press 2nd $x^{-1}$ for [MATRIX] mode
Choose NAME
1: [B] ENTER
ENTER

Repeat the same procedure for $[B] \times[A]$


## ACTIVITY 2

Given matrix $A$ and $B$ as below:

$$
A=\left(\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
10 & 3 \\
1 & 7
\end{array}\right)
$$

Find
a) $A B$
b) $B A$

## DISCUSSION:

- What can you say about the relation between AB and BA?


## Solution:

## ACTIVITY 3

The table below shows the mass of sugar, salt and flour in kg, which is bought by 3 restaurant owners on a certain day.

|  | Sugar | Salt | Flour |
| :---: | :---: | :---: | :---: |
| Wan | 4 | 1 | 7 |
| Erni | 3 | 2 | 6 |
| Fauliza | 5 | 1 | 9 |

The price of sugar, salt and flour (per kg) on Saturday are as shown below:

|  | Price per $\mathrm{Kg}(\mathrm{RM})$ |
| :---: | :---: |
| Sugar | 2.10 |
| Salt | 0.80 |
| Flour | 2.50 |

a) Key in the information given in matrix form.
b) How much does each restaurant owner spend on Saturday by using matrix?

## Solution:

Key in the data for matrix $A$.

Repeat the step above to enter the value in matrix $B$

Press 2nd MODE for [QUIT] mode and return to Home Screen

Press 2nd $x-1$ for [MATRIX] mode
Choose NAMES
1: [A] ENTER
Press $\boldsymbol{x}$ key
Press 2nd $x-1$ for [MATRIX] mode
Choose NAMES
1: [B] ENTER


## STUDENT'S WORKSHEET

## ACTIVITY 3

The table below shows the mass of sugar, salt and flour in kg , which is bought by 3 restaurant owners on a certain day.

|  | Sugar | Salt | Flour |
| :---: | :---: | :---: | :---: |
| Wan | 4 | 1 | 7 |
| Erni | 3 | 2 | 6 |
| Fauliza | 5 | 1 | 9 |

The price of sugar, salt and flour (per kg ) on Saturday are as shown below:

|  | Price per Kg (RM) |
| :---: | :---: |
| Sugar | 2.10 |
| Salt | 0.80 |
| Flour | 2.50 |

1) Key in the information given in matrix form.
2) How much does each restaurant owner spend on Saturday by using matrix?

## Solution:

## ACTIVITY 4

Determine whether matrix $\boldsymbol{B}$ is an inverse matrix of $\boldsymbol{A}$.
a) $\quad A=\left(\begin{array}{cc}4 & -2 \\ 2 & 3\end{array}\right)$
$B=\left(\begin{array}{cc}3 & 2 \\ -2 & 4\end{array}\right)$
b) $\quad A=\left(\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right)$
$B=\left(\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right)$

## DISCUSSION:

i. What is the condition for the existence of inverse matrix?

## Solution:

## a)

Key in the data for matrix $A$.

Repeat the step above to enter the value in matrix $B$


Press 2nd MODE for [QUIT] mode and return to Home Screen

Press 2nd $x^{-1}$ for [MATRIX] mode
Choose NAMES
1: [A]ENTER
Press $\times$ key
Press 2nd $x-1$ for [MATRIX] mode
Choose NAMES
1: [B] ENTER


ENTER

CONCLUSION: MATRIX B IS NOT AN INVERSE MATRIX OF A
b)

CONCLUSION: MATRIX B IS AN INVERSE MATRIX OF A


## ACTIVITY 4

Determine whether matrix $\boldsymbol{B}$ is an inverse matrix of $\boldsymbol{A}$.
a) $\quad A=\left(\begin{array}{cc}4 & -2 \\ 2 & 3\end{array}\right)$
$B=\left(\begin{array}{cc}3 & 2 \\ -2 & 4\end{array}\right)$
b) $\quad A=\left(\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right)$
$B=\left(\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right)$

DISCUSSION:
i. What is the condition for the existence of inverse matrix?

Solution:

## ACTIVITY 5

Determine which of the following matrix is an inverse matrix of $A=\left(\begin{array}{cc}4 & 2 \\ -3 & -2\end{array}\right)$.
$B=\left(\begin{array}{cc}-3 & 4 \\ 1 & -2\end{array}\right), \quad C=\left(\begin{array}{cc}-2 & 4 \\ 1 & -3\end{array}\right), \quad D=\left(\begin{array}{cc}1 & 1 \\ \frac{-3}{2} & -2\end{array}\right), \quad E=\left(\begin{array}{cc}\frac{1}{2} & -3 \\ 1 & 7\end{array}\right)$
DISCUSSION:
i. How to identify which matrix is the inverse of the matrix $A$ ?

## Solution:

Key in the data for matrix $A$.

Repeat the step above to enter the value in matrix $B$
Press 2nd MODE for [QUIT] mode and return to Home Screen

Press 2nd x-1 for [MATRIX] mode
Choose NAME
1: [ A ] ENTER
Press $\boldsymbol{x}$ key
Press 2nd $x-1$ for [MATRIX] mode
Choose NAME
1: [B] ENTER
ENTER


## CONCLUSION:

- MATRIX B, C and E IS NOT AN INVERSE MATRIX OF A
- MATRIX D IS AN INVERSE MATRIX OF A



## ACTIVITY 5

Determine which of the following matrix is an inverse matrix of $A=\left(\begin{array}{cc}4 & 2 \\ -3 & -2\end{array}\right)$.

$$
B=\left(\begin{array}{cc}
-3 & 4 \\
1 & -2
\end{array}\right), \quad C=\left(\begin{array}{cc}
-2 & 4 \\
1 & -3
\end{array}\right), \quad D=\left(\begin{array}{cc}
1 & 1 \\
\frac{-3}{2} & -2
\end{array}\right), \quad E=\left(\begin{array}{cc}
\frac{1}{2} & -3 \\
1 & 7
\end{array}\right)
$$

DISCUSSION:
i. How to identify which matrix is the inverse of the matrix A?

## Solution:

```
TOPIC : MATRICES
```


## LESSON OBJECTIVE :

Students will be able to...
i. Understand and use the concept of inverse matrix.

EXAMPLE QUESTION : Solve $\left(\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right)\binom{x}{y}=\binom{-7}{-8}$

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Let $\boldsymbol{A}=\left(\begin{array}{ll}\mathbf{3} & \mathbf{5} \\ \mathbf{4} & \mathbf{6}\end{array}\right)$ |  | So, the equation above can be write as $A\binom{x}{y}=\binom{-7}{-8}$ |
| Questions for Discussion: <br> i. Why the use of inverse matrix is necessary? <br> ii. What happen when matrix $A^{-1} \times$ matrix $A$ ? |  |  |  |
| 2 | Let $\boldsymbol{B}=\binom{-7}{-8}$ |  | To Find $\binom{x}{y}$, multiply inverse matrix, $A^{-1}$ in both sides. $\begin{gathered} A^{-1} A\binom{x}{y}=A^{-1}\binom{-7}{-8} \\ \binom{x}{y}=A^{-1}\binom{-7}{-8} \end{gathered}$ <br> So, key in $\binom{-7}{-8}$ as matrix $B$ |
| 3 | Press 2nd MODE for [QUIT] mode. <br> Return to Home Screen <br> Press 2nd $x$ x- for MATRX mode. |  |  |


|  | Choose NAMES 1: [ A ] $x^{x-1}$ <br> Press 2nd MATRX for MATRX mode again and choose <br> NAMES 2: [B] <br> ENTER | $\left[\begin{array}{ll}{[H]-1[B]} & {\left[\begin{array}{ll}{[1]}\end{array}\right]} \\ & \\ & \\ & \\ \hline\end{array}\right.$ | What is the value of $x$ and $y$ ? $\boldsymbol{x}=\square \text { and } \boldsymbol{y}=$ |
| :---: | :---: | :---: | :---: |
| 4 | Some answers can be in decimals form; <br> To display it in FRACTION form, <br> Press MATH-key <br> Choose 1:Frac ENTER |  |  |
| 5 | To calculate the DETERMINANT, <br> Press 2nd MATRX for MATRX, choose MATH, choose 1: det( ENTER <br> Press 2nd MATRX for MATRX, choose NAMES, choose 1: [ A ] ENTER <br> Press ENTER for answer. | NAMES [IFTH EDIT 1月det <br>  <br> s:dims <br> 4:Fillc <br> 5:identity <br> 6:randMC <br> itaugment ( | If matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then, Determinant of matrix $A=\square$ |

## Questions for discussion.

1) What is the use of determinant?
2) Can you represent simultaneous linear equations as matrix equation?
3) What rules do you follow in order to represent simultaneous linear equations as matrix equation?

## ACTIVITY 1

Solve the problem given.
(a) It is given that $\left(\begin{array}{ll}1 & 2 \\ \frac{1}{2} & n\end{array}\right)$ is the inverse matrix of $\left(\begin{array}{cc}3 & -4 \\ -1 & 2\end{array}\right)$. Find the value of $n$.
(b) Write the following simultaneous linear equations as matrix equation:

$$
\begin{aligned}
& 3 u-4 v=-5 \\
& -u+2 v=2
\end{aligned}
$$

Hence, using matrices, calculate the value of $u$ and $v$.
(SPM 2006)

## Solution:

## (a)

Key in the data for matrix $A$.

Press 2nd MODE for [QUIT] mode and return to Home Screen
Press 2nd MATRX for MATRX mode again and choose NAMES

1: [A]

ENTER
$x^{-1}$

Press MATH, choose 1: Frac ENTER

ENTER

$\qquad$


Compare the answer with the given inverse matrix, $\quad \therefore n=\frac{3}{2}$
(b)

Repeat the step above to enter the elements in matrix $B$

Press 2nd MODE for [QUIT] mode and return to Home Screen Press 2nd x-1 for MATRX mode and choose NAMES 1: [ A ]

$x-1$

Press 2nd $x-1$ for MATRX mode again and choose NAMES
2: [B]

ENTER

Press MATH
Choose 1:Frac

ENTER


## ACTIVITY 1

Solve the problem given.
(a) It is given that $\left(\begin{array}{cc}1 & 2 \\ \frac{1}{2} & n\end{array}\right)$ is the inverse matrix of $\left(\begin{array}{cc}3 & -4 \\ -1 & 2\end{array}\right)$. Find the value of $n$.
(b) Write the following simultaneous linear equations as matrix equation:

$$
\begin{aligned}
& 3 u-4 v=-5 \\
& -u+2 v=2
\end{aligned}
$$

Hence, using matrices, calculate the value of $u$ and $v$.

## Solution:

## ENRICHMENTS

SPM 2005
It is given that matrix $P=\left(\begin{array}{cc}2 & -5 \\ 1 & 3\end{array}\right)$ and matrix $Q=k\left(\begin{array}{cc}3 & h \\ -1 & 2\end{array}\right)$ such that $P Q=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
a) Find the value of $k$ and of $h$.
b) Using matrices, find the value of $x$ and of $y$ that satisfy the following simultaneous linear equations:

$$
\begin{aligned}
& 2 x-5 y=-17 \\
& x+3 y=8
\end{aligned}
$$

## SPM 2007

a) Given $\frac{1}{m}\left(\begin{array}{ll}-4 & 2 \\ -5 & 3\end{array}\right)\left(\begin{array}{ll}n & -2 \\ 5 & -4\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, find the value of $m$ and of $n$.
b) Using matrices, calculate the value of $x$ and of $y$ that satisfy the following matrix equation:

$$
\left(\begin{array}{ll}
-4 & 2 \\
-5 & 3
\end{array}\right)\binom{x}{y}=\binom{1}{2}
$$

## SPM 2008

The inverse matrix of $\left(\begin{array}{ll}2 & 3 \\ 4 & 7\end{array}\right)$ is $\frac{1}{k}\left(\begin{array}{cc}7 & -3 \\ m & 2\end{array}\right)$.
a) Find the value of $m$ and of $k$.
b) Write the following simultaneous linear equations as matrix equation:

$$
\begin{aligned}
& 2 x+3 y=-1 \\
& 4 x+7 y=5
\end{aligned}
$$

Hence, using matrix method, calculate the value of $x$ and of $y$.

## TOPIC : GRADIENT AND AREA UNDER THE GRAPH

## LESSON OBJECTIVE :

Students will be able to...
i. Understand and use the concept of quantity represented by the gradient of the graph.
ii. Find the speed for a period of time from a distance-time graph.

## EXAMPLE QUESTION :

Ms. Devi leaves her house at 1000 to visit her friend by car. She reached home at 1330 after met her friend. Ms. Devi's journey description as below:
Ms. Devi had drive $\mathbf{8 0}$ km for 1 hour and $\mathbf{3 0}$ minutes to reach her friend's house.
Ms. Devi took only 1 hour to drive back to her house.
Then,
a) Plot a Distance-Time graph to shows Ms. Devi's journey.
b) Calculate the speed of Ms. Devi's car for the first 1 hour.
c) Find the speed of Ms. Devi's car from 1130 to 1230.
d) Find the speed of Ms. Devi's car when going back home.



|  | Select CALC <br> Choose4:LinReg(ax+b) <br> ENTER <br> Press [2nd [1]for [L1] [2nd] 2 <br> for [L2] <br> ENTER |  | LinReg (ax+b) mode is an order to simulate the straight line equation, $y=m x+c$, where $m=a$, and $c=b$. <br> From LinReg, the gradient, <br> $m$ is $\square$ <br> From the gradient, the speed of Ms. Devi's car for the first 1 hour is $\square$ $\mathrm{km} / \mathrm{h}$ |
| :---: | :---: | :---: | :---: |
| 6 | Press STAT <br> Select CALC <br> Choose4:LinReg(ax+b) ENTER <br> Press [2nd] 3 for [L3] $\square$ <br> 2nd 4 for [L4] <br> ENTER <br> Press STAT <br> Select CALC <br> Choose4:LinReg(ax+b) ENTER <br> Press [2nd/5]for [L5] $\square$ <br> [2nd/6for [L6] <br> ENTER | LinReg <br> $\stackrel{\rightharpoonup}{\because}=\boldsymbol{3} \times+$ b <br> $9=0$ <br> $b=80$ <br> LinReg $\begin{aligned} & ==-8+b \\ & 3=-80 \\ & b=280 \end{aligned}$ | From LinReg, the gradient, $m$ is 0 . <br> We can conclude that, the gradient, which is the speed of Ms. Devi's car from 1130 to 1230 is $\square \mathrm{km} / \mathrm{h}$ <br> From LinReg, the gradient, $m$ is $\square$ <br> We can conclude that, the gradient, which is the speed of Ms. Devi's car when going back home is $\mathrm{km} / \mathrm{h}$ |

## Discussion:

1. From the graph, what can you say about Ms. Devi's car from 1130 to 1230 ?

2. Can you give the meaning for negative sign of a gradient?

## ACTIVITY 1

Diagram shows a displacement-time graph for the journey of a car from town $A$ to town $C$ passing town $B$ then back to town $A$.

(a) Calculate the speed in $\mathrm{km} / \mathrm{h}$ for the journey from town $A$ to town $B$.
(b) Calculate the speed in $\mathrm{km} / \mathrm{h}$ for the journey from town $B$ to town $C$.
(c) Calculate the speed of the car when going back to town $A$.

ANSWER:


| 2 | (a) Town $A$ to town $B$ Press 2nd $Y=$ for [STAT PLOT], Choose 1: Plot 1 ENTER $\rightarrow$ On $\rightarrow$ ENTER Select Type: L $\sim$, ENTER Xlist: L1, Ylist: L2 <br> (b) Town B to town C Press 2nd $Y$ rl for [STAT PLOT], Choose 2: Plot 2 ENTER <br> For On press ENTER Select Type: Lـ, ENTER Xlist: L3, <br> Ylist: L4 <br> (c) Going back to town $A$ Press 2nd $Y$ rl for [STAT PLOT], Choose 3: Plot 3 ENTER <br> For On press ENTER Select Type: Lـ, ENTER Xlist: L5, <br> Ylist: $\mathbf{L 6}$ | 10til Flotz Flots Or 0 Of <br>  <br> Xlist:L1 <br> Ylist:Lz <br> Mark: - $^{\text {- }}$ | To change the Xlist, Press [2nd [3]for [L3] $\rightarrow$ ENTER] <br> To change the Ylist, Press 2nd [4for [L4] $\rightarrow$ ENTER <br> To change the Xlist, Press [2nd [5for [L5] $\rightarrow$ ENTER] <br> To change the Ylist, Press 2nd 6for [L6] $\rightarrow$ ENTER |
| :---: | :---: | :---: | :---: |
| 3 | Press WINDOW and key in the setting. |  |  |
| 4 | Press $\square$ GRAPH | (b) | (a) Graph from town $A$ to town $B$. <br> (b) Graph from town $B$ to town $C$. <br> (c) Going back to town $A$ |


| 5 | Press STAT <br> Choose CALC <br> Select 4:LinReg(ax+b) <br> Press 2nd 17 for [L1] $\square$ <br> 2nd 2ffor [L2] <br> ENTER | ```EDIT ETHLE TESTS 1:1-var* Stats 2:2-war Stats 3:Med-Med 4日LinReg(ax+b) 5:QuadReg 6:CubicRe9 74QuartReg LinRe9(ax+b) L1, Lz LinReg y=ax+b g=2.25 b=0``` | (a) The speed from town $A$ to town $B$ is $\square$ $\mathrm{km} / \mathrm{min}$. $\square$ $\times 60 \mathrm{~min}=$ $\square$ $k m / h$ <br> The speed from town $A$ to town $B$ is $\square$ $\mathrm{km} / \mathrm{h}$. |
| :---: | :---: | :---: | :---: |
| 6 | Press STAT <br> Select CALC <br> Choose4:LinReg(ax+b) <br> ENTER <br> Press 2nd 3 for [L3] $\square$ <br> 2nd 4 for [L4] <br> ENTER | ```LinReg y=a>+b \Xi=.4285714286 b=36.42857143``` | (b) <br> The speed from town B to town C is $\square$ km/min. $\square$ $\times 60 \mathrm{~min}=$ $\square$ $k m / h$ <br> The speed from town B to town $C$ is $\square$ $\mathrm{km} / \mathrm{h}$. |
| 7 | Press STAT <br> Select CALC <br> Choose4:LinReg(ax+b) <br> ENTER <br> Press 2nd 5 ffor [L5] $\square$ <br> 2nd 6ffor [L6] <br> ENTER | ```LinReg y=a>+b a=-1.935483871 b=183.8769677``` | (c) <br> The speed going back to town A is $\square$ $\mathrm{km} / \mathrm{min}$. $\square$ $\times 60$ min $=$ $\square$ $k m / h$ <br> The speed going back to town $A$ is $\square$ $k m / h$. |
| Questions for discussion <br> i. What is the gradient of a graph represents? |  |  |  |
|  |  |  |  |
| ii. Can you tell the difference between distance-time graph and speed-time graph? | Can you tell the differe | between distance-time graph | and speed-time graph? |

## ACTIVITY 2

Diagram shows speed-time graph of a particle for a period of 15 seconds.

a) Calculate the distance, in $m$, for the first 5 seconds.
b) Calculate the rate of change of speed, in $\mathrm{m} \mathrm{s}^{-2}$, in the first 5 seconds
c) Calculate the rate of change of speed, in $\mathrm{ms}^{-2}$, in the last 4 seconds.

## ANSWER:



| 2 | (d) Town A to town B Press 2nd $Y=$ for [STAT PLOT], Choose 1: Plot 1 ENTER $\rightarrow$ On $\rightarrow$ ENTER Select Type: L $\sim$, ENTER Xlist: L1, Ylist: L2 <br> (e) Town B to town C Press 2nd $Y$ Y for [STAT PLOT], Choose 2: Plot 2 ENTER <br> For On press ENTER Select Type: Lـ, ENTER Xlist: L3, <br> Ylist: L4 <br> (f) Going back to town A Press 2nd $Y$ rl for [STAT PLOT], Choose 3: Plot 3 ENTER <br> For On press ENTER Select Type: Lـ, ENTER Xlist: L5, <br> Ylist: $\mathbf{L 6}$ |  <br> Ploti fact plots Br 0 +f <br>  <br> Xlist:L3 <br> Ylist:L4 <br> Mark: - + <br>  0 HF f <br> TYFE: <br> Xlist:Ls <br> Ylist:Ĺ <br> Mark: + . | To change the Xlist, Press [2nd 3 for [L3] $\rightarrow$ ENTER <br> To change the Ylist, Press 2nd 4ffor [L4] $\rightarrow$ ENTER] <br> To change the Xlist, Press [2nd 5for [L5] $\rightarrow$ ENTER] <br> To change the Ylist, Press [2nd [6for [L6] $\rightarrow$ ENTER |
| :---: | :---: | :---: | :---: |
| 3 | Press WINDOW and key in the setting. | $\begin{aligned} & \text { WINDOW } \\ & \text { min=0 } \\ & \text { max }=20 \\ & \text { min }=1 \\ & \text { max }=20 \\ & y=c l=1 \\ & \text { Xres=1 } \end{aligned}$ |  |
| 4 | Press GRAPH |  | Speed-Time graph plotted. |



| 5 | Press 2nd/TRACEfor [CALC] <br> Choose 7: $\int f(x) d x$ <br> ENTER <br> Press 0 for lower limit, $x=0$. <br> ENTER <br> Press 5 for upper limit, $x$ $=5$. <br> ENTER | EFLEDDLFTV <br> TValde <br> 2: zero <br> S: mini mum <br>  <br> 5 : intersect <br> 6:dydx <br> FB $f(x) d x$ | (a) <br> The distance, in $m$, for the first 5 seconds |
| :---: | :---: | :---: | :---: |
| 6 | Press STAT <br> Select CALC <br> Choose4:LinReg(ax+b) <br> ENTER <br> Press 2nd 1 ffor [L1], <br> 2nd] 2for [L2]], | LinReg (ax+b) L1: | From LinReg, the gradient, $m$ is $\square$ |


|  |  | $\begin{aligned} & \text { LinReg } \\ & =3=3 \times+b \\ & \overrightarrow{3}=0.2 \end{aligned}$ | (b) <br> The rate of change of speed, in $\mathrm{m} \mathrm{s}^{-2}$, in the first 5 seconds |
| :---: | :---: | :---: | :---: |
| 7 | Press STAT <br> Select CALC <br> Choose4:LinReg(ax+b) <br> ENTER <br> Press 2nd 5 ffor [L5] $\square$ <br> 2nd 6ffor [L6] <br> ENTER | $\begin{aligned} & \begin{array}{l} \exists=3 \times+b \\ b=3.2 \\ b=0 \end{array} \\ & \text { LinReg(ax+b) Ls, } \end{aligned}$ $\begin{gathered} \text { LinReg } \\ 3=-8+4 \\ ==-4 \\ b=6.0 \end{gathered}$ | From LinReg, the gradient, $m$ is $\square$ <br> (c) The rate of change of speed, in $\mathrm{ms}^{-2}$, in the last 4 seconds = $\square$ |
| Question for Discussion <br> i. Can you guess the meaning of negative sign, $\boldsymbol{a}$ ? |  |  |  |

Do the activity again without using graphing calculator.
ACTIVITY 2

Diagram shows speed-time graph of a particle for a period of 15 seconds.

a) Calculate the distance, in $m$, for the first 5 seconds.
b) Calculate the rate of change of speed, in $\mathrm{m} \mathrm{s}^{-2}$, in the first 5 seconds
c) Calculate the rate of change of speed, in $\mathrm{ms}^{-2}$, in the last 4 seconds.

ANSWER:

## ENRICHMENT

Diagram shows the speed-time graph of two particles, $\boldsymbol{A}$ and $\boldsymbol{B}$ for a period of 8 seconds.


The graph OKNM represents the movement of particle A and the graph JKL represents the movement of particle B. Both particles start moving at the same time.
a) Calculate the rate of change of speed, in $\mathrm{ms}^{-2}$, of particle $\boldsymbol{A}$ in the first 6 s .
b) Calculate the rate of change of speed, in $\mathrm{ms}^{-2}$, of particle $\boldsymbol{B}$ for a period of 8 s .
c) Find the distance, in $m$, when both particles meet.

ANSWER:

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press STAT <br> Choose 1: Edit... | $\qquad$ <br> 10Edit.. <br> 2: Sort <br> 3: Sortuc <br> 4:CirList <br> 5: SetuFEditor | Key in data as table below: |


| 2 | Press 2nd $Y \neq$ for <br> [STAT PLOT], <br> Choose 1: Plot 1 ENTER <br> For On press ENTER <br> Select Type: L $\sim$, ENTER <br> Xlist: L1, <br> Ylist: L2 |  |  |
| :---: | :---: | :---: | :---: |
| 3 | Press WINDOW and key in the setting. |  |  |
| 4 | Press GRAPH |  | Speed-Time graph of OKN plotted. |
| 5 | Press STAT <br> Select CALC <br> Choose4:LinReg(ax+b) <br> ENTER |  | LinReg (ax+b) mode is an order to simulate the straight line equation, $y=m x+c$, where $m=a$, and $c=b$. |


|  | Press [2nd/ 1 for [L1] $\square$ <br> 2nd 2 for [L2] <br> ENTER | LinReg(ax+b) L1, L2■ $\begin{aligned} & \text { LinReg } \\ & ==3+6 \\ & a=1.3 \leq s .3 s s 3 \\ & b=0 \end{aligned}$ | From LinReg, the gradient, $m$ is $\square$ <br> (a) <br> Calculate the rate of change of speed, in $\mathrm{ms}^{-2}$, of particle $A$ in the first 6 s. $=\square m s^{-2}$ |
| :---: | :---: | :---: | :---: |
|  <br> From the graph, obviously JKL is horizontal line; Therefore, the gradient <br> (b) <br> Calculate the rate of change of speed, in $\mathrm{ms}^{-2}$, of particle B in the 8 s . $=\square$ (uniform speed) |  |  |  |
| 6 | Press 2nd TRACEffor [CALC] <br> Choose 7: $\int f(x) d x$ <br> ENTER |  | From the graph, known that both particles meet when time at 3 s . |



## Questions for discussion

i. In certain cases, the area under a graph may not represent any meaningful quantity. Can you give one example?

ii. Can you find certain formulas for finding the area under a graph involving:
a. A straight line which is parallel to x-axis?

b. A straight line in the form of $y=k x+h$ ?

c. A combination of above?


Do the activity again without using graphing calculator
ENRICHMENT
Diagram shows the speed-time graph of two particles, $\boldsymbol{A}$ and $\boldsymbol{B}$ for a period of 8 seconds.


The graph OKNM represents the movement of particle $\boldsymbol{A}$ and the graph JKL represents the movement of particle B. Both particles start moving at the same time.
a) Calculate the rate of change of speed, in $\mathrm{ms}^{-2}$, of particle $\boldsymbol{A}$ in the first 6 s .
b) Calculate the rate of change of speed, in $\mathrm{ms}^{-2}$, of particle $\boldsymbol{B}$ for a period of 8 s .
c) Find the distance, in $m$, when both particles meet.

ANSWER:

## TOPIC : PROBABILITY 2

## LESSON OBJECTIVES

Students will be able to...
i. Find the ratio of the number of times an event occurs to the number of trials
ii. Find the probability of an event from a big enough number of trials.
iii. Predict the occurrence of an outcome and make a decision based on known information.

| APPLICATION | $:$ | PROBABILITY SIMULATION |
| :--- | :--- | :--- |
| NOTES | $:$ |  |

An observed probability is based on data collected from experience or practical work such as flipping coins.

Theoretical probability is the outcome from known quantities.

Activity $1 \quad: \quad$ To apply probability concept from 'Tossing the Coins' simulation activity.

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press APPS <br> choose Prob Sim <br> ENTER <br> ENTER (or press any key) |  |  |
| 2 | Choose 1.Toss coins |  |  |
| 3 | Press OK. <br> Press ALPHA ZOOM to get[F3] |  | Setting: to set number of trial. <br> Trial Set: 1 means the coin is toss once |
| 4 | Pres WINDOW to get ADV | Side What. Prob  <br> Heads 1 $: 5$ <br> Head 1 5 <br>    <br> ESC   | To check that the chances of obtaining HEAD and TAIL is fair (Equal Probability) $\frac{1}{2}=0.5$ |


| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 5 | Press GRAPH twice <br> Press WINDOW to [TOSS] the coin and obtain either HEAD or TAIL. |  |  |
| 6 | Press ZOOM for [+10] to toss 10 times. |  | The coin is tossed 10 times |
| 7 | Press TRACE for [+50]to toss 50 times |  | The coin is tossed 50 times |
| 8 | Press $Y=$ to get [ESC] <br> Press GRAPH to get Tabl to see the results in table form. |  | The table shows the number of tosses[TOSS], the result of the toss[1] and the cumulative HEAD tossed [ CumH]. |

```
NOTE:
This ratio of Head to Tosses can be written as }\frac{number of HEAD}{\mathrm{ total number of tosses}}\mathrm{ and is called
```

the Probability of obtaining Head when randomly tossing a coin.

## Discussion

$$
\text { Can you figure events that produce } \mathbf{P}(\mathbf{A})=\mathbf{1} \text {, and } \mathbf{P}(\mathbf{A})=\mathbf{0} \text { ? }
$$

## Questions for discussion

i. Fill in your findings from the simulation,

| The total number of Head | 28 |
| :--- | :---: |
| Total number of toss | 61 |
| Probability getting Head | $\frac{28}{61}=0.46$ |

ii. Fill in the table with results from 5 other friends

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Probability | 0.46 |  |  |  |  |  |

iii. Compare and discuss their result

| Similarity | Differences |
| :--- | :--- |
| The bigger the number of tosses the <br> probability to be close to 0.5 | Each person might not get the same ratio <br> of head to tosses |

iv. What can you conclude based on the results?
a) Knowledge about probability is very useful in making decision.
b) Prediction based on probability is not definite or absolute.

## Questions for discussion

i. Fill in your findings from the simulation,

| The total number of Head |  |
| :--- | :--- |
| Total number of toss |  |
| Probability getting Head |  |

ii. Fill in the table with results from 5 other friends

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Probability |  |  |  |  |  |  |

iii. Compare and discuss their result

| Similarity | Differences |
| :--- | :--- |
|  |  |
|  |  |

iv. What can you conclude based on the results?

## Activity 2

- Students can repeat the activity to compare their theoretical probability and their observed probability

| Steps | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | In the Settings, Change Trial Set: to 5 . Press GRAPH for OK. |  | The coin will be tossed 5 times for each set. |
| 2 | Start the activity: <br> Press WINDOW to get TOSS, <br> Press GRAPH to get TABL <br> Transfer CumH from the calculator to Table 1. <br> Find the probability of Head. <br> Convert the probability in decimal form |  |  |
| 3 | Repeat the step until 35 numbers of tosses. |  |  |

Table 1

| Number Toss | Cumulative of <br> heads [CumH] | Probability = cumulative /toss | In decimal form |
| :---: | :---: | :---: | :---: |
| 5 | 3 | $3 / 5$ | 0.6 |
| 10 |  |  |  |
| 15 |  |  |  |
| 20 |  |  |  |
| 25 |  |  |  |
| 30 |  |  |  |
| 35 |  |  |  |

## DISCUSSION :

1. What do you notice about the probability of head as the number of tosses increases?

The probability will be close to 0.5
2. What would be your theoretical probability of getting Head when you toss the coin 100 times?

The probability will be close to 0.5

## EXERCISES :

1. Suppose 250 people have applied for 18 job opening at a chain restaurant.
i) What is the ratio of applicants will get the job to the number of applicants?

$$
\frac{18}{250}=0.072
$$

ii) What is the probability of applicants will not be getting the job?

$$
1-0.072=0.928
$$

2. Suppose there are $\mathbf{1 7 0}$ SPM leavers in your school. $\mathbf{5 2}$ of them have applied to be studying in private colleges. In a survey, $\mathbf{3 3}$ of them have will be studying in private colleges.
i) What is the theoretical probability that the students will be studying in private colleges.

$$
\frac{52}{170}=0.306
$$

ii) Based on your survey, what is the observed probability that they will be studying in private colleges.

$$
\frac{33}{170}=0.194
$$

3. The table shows the distribution of a group of 90 pupils playing a game.

|  | Form Four | Form Five |
| :---: | :---: | :---: |
| Girls | 33 | 15 |
| Boys | 18 | 24 |

A pupil is chosen at random from the group to start the game.
What is the probability that a girl from Form Four will be chosen?

$$
\frac{33}{90}=0.367
$$

4. The table below shows how a group of $\mathbf{4 0 0}$ students travel to school.

| Type of Transport | Bicycle | Motorcycle | Car | Bus |
| :---: | :---: | :---: | :---: | :---: |
| Number of <br> students | 100 | 70 | 80 | 150 |

A student is chosen from the group.
Find the probability that the student travels to school by car.

$$
\frac{80}{400}=0.2
$$

1. What do you notice about the probability of head as the number of tosses increases?
$\qquad$
$\qquad$
2. What would be your theoretical probability of getting Head when you toss the coin 100 times?
$\qquad$

## EXERCISES :

1. Suppose 250 people have applied for 18 job opening at a chain restaurant.
i) What is the ratio of applicants will get the job to the number of applicants?
$\qquad$
ii) What is the probability of applicants will not be getting the job?
$\qquad$
2. Suppose there are $\mathbf{1 7 0}$ SPM leavers in your school. $\mathbf{5 2}$ of them have applied to be studying in private colleges. In a survey, $\mathbf{3 3}$ of them have will be studying in private colleges.
i) What is the theoretical probability that the students will be studying in private colleges.
$\qquad$
ii) Based on your survey, what is the observed probability that they will be studying in private colleges.
3. The table shows the distribution of a group of 90 pupils playing a game.

|  | Form Four | Form Five |
| :---: | :---: | :---: |
| Girls | 33 | 15 |
| Boys | 18 | 24 |

A pupil is chosen at random from the group to start the game.
What is the probability that a girl from Form Four will be chosen?
$\qquad$
4. The table below shows how a group of 400 students travel to school.

| Type of Transport | Bicycle | Motorcycle | Car | Bus |
| :---: | :---: | :---: | :---: | :---: |
| Number of <br> students | 100 | 70 | 80 | 150 |

A student is chosen from the group.
Find the probability that the student travels to school by car.
$\qquad$

## TOPIC

: FUNCTIONS

## LESSON OBJECTIVE :

Students will be able to...
i. find the object by inverse mapping given its image of function
ii. Use sketches to show the relationship between a function and its inverse
iii. Determine inverse functions using algebra

## NOTES :

In mathematics, if $f$ is a function from a set $A$ to a set $B$, then an inverse function for $f$ is a function from B to A , with the property that a round trip (a composition) from A to B to A (or from B to A to B ) returns each element of the initial set to itself. Thus, if an input x into the function $f$ produces an output y , then inputting y into the inverse function $f^{-1}$ (read f inverse)


If $f(x)=y$, then $f^{-1}(y)=x$.

## GRAPH OF INVERSE

This is identical to the equation $y=f(x)$ that defines the graph of $f$, except that the roles of x and y have been reversed. Thus the graph of $f^{-1}$ can be obtained from the graph of $f$ by switching the positions of the x and y axes. This is equivalent to the reflection of the graph across the line $y=x$.


Diagram: The graphs of $y=f(x)$ and $y=f^{-1}(x)$ The dotted line is $y=x$

In this module, we will prove that the graph of $y=f(x)$ and $y=f^{-1}(x)$ are reflecting one another across the line $y=x$.

## How to draw inverse functions graph?

Eg: $\quad y=2 x-3$

| Step | Procedure | Screen |
| :---: | :---: | :---: |
| 1 | Press $Y=X, X, \Theta, \Pi$ to graph the parent linear function. |  |
| 2 | Press ZOOM 5 |  |
| Que | ion for discussion <br> Why do we need the line, $y=x$ ? |  |
| 3 | Press $Y=2, \mathrm{X}, \mathrm{T}, \Theta, n \square 3$. |  |
| 4 | Press GRAPH |  |


| Step | Procedure | Screen |
| :---: | :---: | :---: |
| 5 | Next, direct the calculator to draw the inverse for $y=2 x-3$ <br> To access the DRAW menu, press 2nd PRGM. <br> Select 8:Drawlnv. This will paste the command to the home screen | $\qquad$ <br> DFFIT POINTS STO 2tine <br> nor 1 zont.al <br> Tangent <br> : Cr:awf <br> 3yrawinv <br> Draminu |
| 6 | Press VARS, $\square$ to Y -VARS. <br> Choose 1:Function... then choose $\mathbf{2}: \mathrm{Y}_{2}$. | WARS W-WHRTE <br> igFunction. <br> 2:Par anetric... <br> 4:0nन0f\%... <br> Dr:awInv Yz |
| Question for discussion |  |  |
|  | Examine the inverse. What can you observe the pattern between $y=2 x-3$ and its inverse? |  |


| 7 | Find the inverse of $y=2 x-3$ <br> By using algebra:- $\text { Lets } \begin{aligned} x & =2 y-3 \\ 2 y & =x+3 \\ y & =\frac{x+3}{2} \end{aligned}$ <br> Enter the inverse of $y=2 x-3$ into $\mathbf{Y}_{3}$. <br> Move the cursor to the left of $\boldsymbol{Y}_{\mathbf{3}}$ <br> Press ENTER to change the line to a thick line. |  |
| :---: | :---: | :---: |
| 8 | Press GRAPH. <br> What do you observe? |  |

## ACTIVITY 2

1. Using the step above, find and draw graph of inverse function for $y=\sqrt[3]{5 x}$.

| Inverse function | Graph |
| :--- | :---: |
| Using algebra:- |  |
| $y=\sqrt[3]{5 x}$ |  |
| Lets $x=\sqrt[3]{5 y}$ |  |
| $5 y=x^{3}$ |  |
| $y=\frac{x^{3}}{5}$ |  |

2. Find and draw graph of inverse function for $y=(x+3)^{2}-4$

3. Using the step above, find and draw graph of inverse function for $y=\sqrt[3]{5 x}$.

| Inverse function | Graph |
| :--- | :--- |
| Using algebra:- |  |
|  |  |
|  |  |
|  |  |

2. Find and draw graph of inverse function for $y=(x+3)^{2}-4$

| Inverse function |  |
| :--- | :--- |
| Using algebra:- |  |
|  |  |
|  |  |

## ACTIVITY 3 :

From Activity 1 and Activity 2, you already learn how to find inverse of the function.
By using algebra, find the inverse function for the function below.

| 1 | $y=3 x+5$ |
| :--- | :--- |
| 2 | $f(x)=\frac{x}{2}+5$ |
| 3 | $f(x)=\frac{3}{x-2}$ |
| 4 | $f(x)=\frac{2 x-7}{x+1}$ |
|  |  |

## SPM QUESTIONS

## SPM 2003 P1 Q2

Given that $g: x \rightarrow 5 x+1$. Find $g^{-1}(3)$

## SPM 2004 P1 Q2

Given that the functions $h: x \rightarrow 4 x+m$ and $h^{-1}: x \rightarrow 2 k x+\frac{5}{8}$, where $m$ and $k$ are constants, find the value of $m$ and of $k$.

## TOPIC

## QUADRATIC FUNCTIONS

SUB-TOPICS

## LESSON OBJECTIVE

Students will be able to...
i. Recognize the shapes of graphs of function $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}$


STEPS:

1) $\operatorname{Press} Y=$
2) Type the Function $y=x^{2} \rightarrow$ press $X, T, \Theta, \eta, x^{2}$, GRAPH, ZOOM press 4
3) Repeat step 1 \& 2 for other quadratic functions.
4) To view graphs individually, press $Y=\sqrt{2}$, move cursor to the equal sign and press enter as shown in the diagram.

$$
' \gamma^{\prime}=\square
$$

COMPLETE THE TABLE BELOW USING GRAPHING CALCULATOR FOR THE VALUE OF $a>0$ and $a<0$

| No | Function | Sketch | Value of $a$ in $y=a x^{2}$ | 0 1  <br> 0 0  <br> 0 0  <br> 0 0  <br> 0 0 0 <br> 0 1 0 <br> 0 0 3 <br> 0 1  <br>  0 3 <br> 0 0  <br> 0 0  <br> 0 0 0 <br> 0 0  | $\begin{aligned} & \text { Determine the turning } \\ & \text { point of the graph } \end{aligned}$ |  | Describe the shape of the graph, (Standard, narrower or wider) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $y=x^{2}$ |  | 1 | up | Minimum point | $x=0$ | Standard |
| 2 | $y=5 x^{2}$ |  | 5 | up | Minimum point | $x=0$ | narrower |
| 3 | $y=0.2 x^{2}$ |  | 0.2 | up | Minimum point | $x=0$ | wider |
| 4 | $y=0.05 x^{2}$ |  | 0.05 | up | Maximum point | $x=0$ | wider |


| No | Function | Sketch | $\begin{gathered} \text { Value of } \\ \quad \begin{array}{c} \text { in } \end{array} \\ y=a x^{2} \end{gathered}$ | $\begin{array}{ll} 0 & \dot{o} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 3 \\ 0 & 1 \\ i & 0 \\ \vdots \\ \text { o } \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$ |  |  | Describe the shape of the graph, (Standard, narrower or wider) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $y=-x^{2}$ |  | -1 | down | Maximum point | $x=0$ | Standard |
| 6 | $y=-3 x^{2}$ |  | -3 | down | Maximum point | $x=0$ | narrower |
| 7 | $y=-0.5 x^{2}$ |  | -0.5 | down | Maximum point | $x=0$ | wider |
| 8 | $y=-0.05 x^{2}$ |  | -0.05 | down | Maximum point | $x=0$ | wider |

## Investigations

1. Describe the effect on the graph $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}$ as the value of a varies?

For $\boldsymbol{a}>0$,
i. The parabola opens upwards.
ii. The vertex is the lowest point.
iii. If the value of $\boldsymbol{a}$ is decreased, the shape of the graphs become wider.
iv. If the value of $\boldsymbol{a}$ is increased, the shape of the graphs become narrower.

For $\boldsymbol{a}<0$,
i. The parabola opens downward.
ii. The vertex is the highest point.
iii. If the value of $\boldsymbol{a}$ is decrease, the shape of the graphs become wider.
iv. If the value of $\boldsymbol{a}$ is increase, the shape of the graphs become narrower.
2. What happens when a approaches zero?

When a approaches zero, the graph appear to be a straight line.
3. What happens when the value of a changes to negative?

When the values of a changes to negative, the straight line becomes a parabola again but concaves downward.
4. Based on your finding, try to predict the shape of the graphs of the following equations:
i. $\quad y=2 x^{2}$
ii. $\quad y=-0.3 x^{2}$
iii. $\quad y=0.04 x^{2}$
iv. $y=-8 x^{2}$

Compare your answers with your friends.


COMPLETE THE TABLE BELOW USING GRAPHING CALCULATOR

| No | Function | Sketch | $\begin{gathered} \text { Value of } \\ \quad \begin{array}{c} \text { in } \\ y=a x^{2} \end{array} \end{gathered}$ |  |  |  | Describe the shape of the graph, (Standard, narrower or wider) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $y=x^{2}$ |  | 1 | up | Minimum point | $x=0$ | The same |
| 2 | $y=5 x^{2}$ |  |  |  |  |  |  |
| 3 | $y=0.2 x^{2}$ |  |  |  |  |  | wider |
| 4 | $y=0.05 x^{2}$ |  |  |  | Maximum point |  |  |


| No | Function | Sketch | Value of a in $y=a x^{2}$ | $\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 3 \\ 0 & 0 \\ \ddagger & 1 \\ \sim & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$ |  |  | Describe the shape of the graph, (Standard, narrower or wider) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $y=-x^{2}$ |  | -1 |  |  |  |  |
| 6 | $y=-3 x^{2}$ |  |  | down |  |  |  |
| 7 | $y=-0.5 x^{2}$ |  |  |  |  |  |  |
| 8 | $y=-0.05 x^{2}$ |  |  |  |  |  |  |

## Investigations

i. Describe the effect on the graph $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}$ as the value of $\boldsymbol{a}$ varies?

## For $\boldsymbol{a}>0$,

i. The parabola
ii. The vertex is
iii. If the value of a is decreased, the shape of the graphs become
iv. If the value of a is increased, the shape of the graphs become $\qquad$ For $\boldsymbol{a}<0$,
i. The parabola $\qquad$
ii. The vertex is
iii. If the value of a is decrease, the shape of the graphs become $\qquad$
iv. If the value of a is increase, the shape of the graphs become $\qquad$
ii. What happens when a approaches zero?
$\qquad$
iii. What happens when the value of a changes to negative?
$\qquad$
iv. Based on your finding, try to predict the shape of the graphs of the following equations:
i. $y=2 x^{2}$
ii. $\quad y=-0.3 x^{2}$
iii. $\quad y=0.04 x^{2}$
iv. $y=-8 x^{2}$

Compare your answers with your friends.

TOPIC
QUADRATIC FUNCTIONS

SUB-TOPICS

$$
y=a x^{2}+b x+c
$$

## LESSON OBJECTIVE

Students will be able to...
i. Recognize the shapes of graphs of functions
ii. Relate the position of quadratic functions graphs with types of roots for $f(x)=0$


USE A GRAPHING CALCULATOR TO DRAW A GRAPH OF EACH FUNCTION AND THEN COMPLETE THE TABLE beLOW FOR THE FUNCTION $y=a x^{2}+b x+c$

| No | Function | Sketch | Value of |  |  | Does the parabola opens up or down | Coordinates of the vertex | Axis of symmetry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $a$ | $b$ | c |  |  |  |
| 1 | $y=x^{2}$ |  | 1 | 0 | 0 | upwards | $(0,0)$ | $x=0$ |
| 2 | $y=x^{2}-6 x+9$ |  | 1 | -6 | 9 | upwards | $(3,0)$ | $x=3$ |
| 3 | $y=x^{2}-5 x+6$ |  | 1 | -5 | 6 | upwards | $\left(\frac{5}{2},-\frac{1}{4}\right)$ | $x=\frac{5}{2}$ |
| 4 | $y=-x^{2}+6 x$ |  | -1 | 6 | 0 | downward $s$ | $(3,9)$ | $x=3$ |
| 5 | $y=x^{2}+x+1$ |  | 1 | 1 | 1 | upwards | $\left(-\frac{1}{2}, \frac{3}{4}\right)$ | $x=-\frac{1}{2}$ |

Table 1

## Investigations

1. What do you notice about the axis of symmetry and the vertex of the graph?

The axis of symmetry passes through the vertex of the graph
2. Based on your finding, complete the table below.

| Functions <br> $y=f(x)$ | Number of $x$-intercept <br> of the graph | Value of $b^{2}-4 a c$ | Types of roots of the <br> equation $f(x)=0$ |
| :---: | :---: | :---: | :---: |
| $y=x^{2}$ | 1 | 0 | Equal roots |
| $y=x^{2}-6 x+9$ | 1 | 0 | Equal roots |
| $y=x^{2}-5 x+6$ | 2 | $1>0$ | Two different roots |
| $y=-x^{2}+6 x$ | 2 | $40>0$ | Two different roots |
| $y=x^{2}+x+1$ | 0 | $-3<0$ | No real root |
| $y=-x^{2}-4 x-5$ | 0 | $-4<0$ | No real root |

Table 2

Hence, relate the position of quadratic function graphs with types of roots of the equation $f(x)=0$.
If the roots are equal, the graph intercepts the $x$-axis.
If the roots are different, the graph intercepts the x-axis.
if there is no real root, there is no interception with the $x$-axis
3. Based on the result in Table 1, express function $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ in form $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}(\boldsymbol{x}+\boldsymbol{p})^{\mathbf{2}}+\boldsymbol{q}$, where $\boldsymbol{p}=$ $-\boldsymbol{x}$, and $\boldsymbol{q}=\boldsymbol{y}$ by looking at the coordinates of the vertex and state the minimum/ maximum value

| Functions $y=f(x)$ | Coordinates of the vertex | Functions $f(x)=a(x+p)^{2}+q$ | Minimum / Maximum value |
| :---: | :---: | :---: | :---: |
| $y=x^{2}-6 x+9$ | $(3,0)$ | $f(x)=(x-3)^{2}$ | 0 |
| $y=x^{2}-5 x+6$ | $\left(\frac{5}{2},-\frac{1}{4}\right)$ | $f(x)=\left(x-\frac{5}{2}\right)^{2}-\frac{1}{4}$ | $-\frac{1}{4}$ |
| $y=-x^{2}+6 x$ | $(3,9)$ | $f(x)=-(x-3)^{2}+9$ | 9 |
| $y=x^{2}+x+1$ | $\left(-\frac{1}{2}, \frac{3}{4}\right)$ | $f(x)=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$ | $\frac{3}{4}$ |
| $y=-x^{2}-4 x-5$ | $(2,-1)$ | $f(x)=-(x-2)^{2}-1$ | -1 |

Table 3

USE A GRAPHING CALCULATOR TO DRAW A GRAPH OF EACH FUNCTION AND THEN COMPLETE THE TABLE BELOW FOR THE FUNCTION $y=a x^{2}+b x+c$

| No | Function | Sketch | Value of |  |  | Does the parabola opens up or down | Coordinates <br> of the <br> vertex | Axis of symmetry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $a$ | $b$ | c |  |  |  |
| 1 | $y=x^{2}$ |  |  |  |  |  |  |  |
| 2 | $y=x^{2}-6 x+9$ |  | 1 | -6 | 9 | upwards | $(3,0)$ | $x=3$ |
| 3 | $y=x^{2}-5 x+6$ |  |  |  |  |  | $\left(\frac{5}{2},-\frac{1}{4}\right)$ |  |
| 4 | $y=-x^{2}+6 x$ |  |  |  |  |  |  |  |
| 5 | $y=x^{2}+x+1$ |  |  |  |  |  |  |  |

Table 1

## Investigations

1. What do you notice about the axis of symmetry and the vertex of the graph?
$\qquad$
2. Based on your finding, complete the table below.

| Functions <br> $y=f(x)$ | Number of $x$-intercept <br> of the graph | Value of $b^{2}-4 a c$ | Types of roots of the <br> equation $f(x)=0$ |
| :---: | :---: | :---: | :---: |
| $y=x^{2}$ |  |  | Equal roots |
| $y=x^{2}-6 x+9$ |  | $1>0$ |  |
| $y=x^{2}-5 x+6$ |  | $-3<0$ | Two different roots |
| $y=-x^{2}+6 x$ |  |  | No real roots |
| $y=x^{2}+x+1$ |  |  |  |
| $y=-x^{2}-4 x-5$ |  |  |  |

Table 2
Hence, relate the position of quadratic function graphs with types of roots of the equation $f(x)=0$.

If the roots are $\qquad$ the graph $\qquad$ the $x$-axis.
If the roots are
the graph the $x$-axis.
If there is
there is with the $x$-axis
3. Based on the result in Table 1, express function $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ in form $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}(\boldsymbol{x}+\boldsymbol{p})^{2}+\boldsymbol{q}$ where $\boldsymbol{p}=-\boldsymbol{x}$, and $\boldsymbol{q}=\boldsymbol{y}$ by looking at the coordinates of the vertex and state the minimum/ maximum value

| Functions <br> $y=f(x)$ | Coordinates of the <br> vertex | Functions <br> $f(x)=a(x+p)^{2}+q$ | Minimum <br> Maximum <br> value |
| :---: | :---: | :---: | :---: |
| $y=x^{2}-6 x+9$ | $(3,0)$ |  |  |
| $y=x^{2}-5 x+6$ |  |  | $-\frac{1}{4}$ |
| $y=-x^{2}+6 x$ |  | $f(x)=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$ |  |
| $y=x^{2}+x+1$ |  |  |  |
| $y=-x^{2}-4 x-5$ |  |  |  |

Table 3

## PAST YEAR QUESTION (2007)

The quadratic function $f(x)=x^{2}+6 x-8$ can be expressed in the form $f(x)=(x+m)^{2}-n$, where $m$ and $n$ are constants. Find the values of $m$ and $n$.

## Guide to use G.C to find answer.

1) Type the function $f(x)=x^{2}+6 x-8$
2) Press GRAPH to view the function.
3) Press ZOOM, chose Z Standard, WINDOW
4) Key in:

5) Press GRAPH to view full graph.
6) Press TRACE], 2nd], [CALC], enter $\rightarrow$ choose 3 minimum
7) Choose left bound ENTER, right bound ENTER, ENTER.

## Answer

1) Minimum point ( $-3,-17$ ), Hence $m=3, n=17$

## Clone SPM 2007

The quadratic function $f(x)=4 x^{2}-16 x+8$ can be expressed in the form $f(x)=a(x+p)^{2}+q$, where $a, p$ and $q$ are constants.
a) Determine the values of $a, p$ and $q$.
b) State the axis of symmetry and the coordinates of the minimum point of the graph of $f(x)$.

## Answer

a) $a=4, p=-2, q=-8$
b) $x=2$, Minimum Point $(2,-8)$


## PAST YEAR QUESTION (2007)

The quadratic function $f(x)=x^{2}+6 x-8$ can be expressed in the form $f(x)=(x+m)^{2}-n$, where $m$ and $n$ are constants. Find the values of $m$ and $n$.

## Answer

## Hint:



## CLONE SPM 2007

The quadratic function $f(x)=4 x^{2}-16 x+8$ can be expressed in the form $f(x)=a(x+p)^{2}+q$, where $a, p$ and $q$ are constants.
c) Determine the values of $a, p$ and $q$.
d) State the axis of symmetry and the coordinates of the minimum point of the graph of $f(x)$.

## Answer

Hint :

```
WIFDIOW
    xmir=-2
    ㅆ․․ \(\mathrm{x}=5\)
    \(\mathrm{x}=1=1\)
    Yir=-12
    Ymax=12
    \(\mathrm{Y} \mathrm{Ec}=1\)
    Xres=1
```

TOPIC : SIMULTANEOUS EQUATIONS

SUB TOPIC : ONE LINEAR EQUATION AND ONE NON-LINEAR EQUATION

## LESSON OBJECTIVE :

Students will be able to...
i. to solve one linear equation and one non-linear equation simultaneously

EXAMPLE QUESTION : Solve the simultaneous equations

$$
y=\frac{1}{3} x+4 \text { and } 3 y-x^{2}-6=0
$$

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press $Y=$ then $X, T, \Theta, n \backsim 3 \oplus 4$ <br> Move the cursor to $Y_{2}$, <br> then press $\square X, T, \Theta, n] x^{2}+6 \square \div 3$ |  | In order to solve the simultaneous equation, make $\boldsymbol{y}$ as the subject of both equations. $y=\frac{1}{3} x+4, \text { and } y=\frac{x^{2}+6}{3}$ |
| 2 | Press GRAPH <br> Press ZOOM <br> choose 6: Z Standard <br> press ENTER |  |  |
| 3 | TO VIEW THE FULL GRAPH <br> Press WINDOW <br> change the setting |  |  |
| 4 | Press GRAPH |  |  |


| 5 | TO SEE THE INTERSECTION POINTS, <br> Press 2nd TRACE for [CALC] mode <br> choose 5: Intersect <br> press ENTER <br> Use the cursor to move the point nearby one of the intersection point. <br> Accept the First line /curve by pressing ENTER. <br> Accept the Second line / curve by pressing ENTER. <br> Guess a value of $x$ or press ENTER again. <br> Read the coordinate of the intersection |  | What is the value of the first intersection? $x=$ $\square$ and $y=$ $\square$ |
| :---: | :---: | :---: | :---: |
| 6 | Repeat step 5 to obtain the second intersection point <br> Read the coordinate of the intersection |  | What is the value of the second intersection point? $x=\square \text { and } y=\square$ |

## DISCUSSION:-

1) What can you say about the graphs?
i. The linear function makes a $\qquad$ while the quadratic function makes a $\qquad$
ii. The two graphs $\qquad$ at two points.
2) What are the solutions of the simultaneous equations?
i. The $\qquad$ of the two graphs are the solutions of the simultaneous equations, which are $\square$
$\square$ ) and $\square$
$\square$
3) SOLVE THE SIMULTANEOUS EQUATION GIVEN USING GRAPHING CALCULATOR

$$
4 x+y=-6 \text { and } x^{2}-5 x y=6
$$



DISCUSSION:-
a) What can you say about the graphs?
i. A straight line and a reciprocal graph.
ii. $\quad$ The linear function makes a straight line, while the reciprocal function makes a reciprocal graph
iii. The two graphs intersect at two points.
b) What are the solutions of the simultaneous equations?

The intersections of the two graphs are the solution of the simultaneous equations, which is (0.18, -6. 71) and (1. 6, 0.4).
2) SOLVE THE SIMULTANEOUS EQUATION GIVEN USING GRAPHING CALCULATOR

$$
x y=36 \text { and } 2 x+2 y=25
$$



INVESTIGATION:-
a) What can you say about the graphs?
i. A straight line and a reciprocal graph.
ii. The linear function makes a straight line, while the reciprocal function makes a reciprocal graph
iii. The two graphs intersect at two points.
b) What are the solutions of the simultaneous equations?

The intersections of the two graphs are the solution of the simultaneous equations, which is $(4.5,8)$ and $(8,4.5)$.
3) SOLVE THE SIMULTANEOUS EQUATION GIVEN USING GRAPHING CALCULATOR

$$
3 x-y=7 \text { and } x^{2}-x y+y^{2}=7
$$

The equations can be simplified like this:

$$
y=3 x-7
$$

$$
\begin{aligned}
& y=+\sqrt{7-x^{2}+x(3 x-7)} \\
& y=-\sqrt{7-x^{2}+x(3 x-7)}
\end{aligned}
$$




## INVESTIGATION:-

a) What can you say about the graphs?
i. A straight line and a quadratic graph.
ii. The linear function makes a straight line, while the quadratic function makes a quadratic graph/curve
iii. The two graphs intersect at one point.
iv. Since the quadratic function has square root to be translated as positive and negative values, the functions also varies.
b) What are the solutions of the simultaneous equations?

The intersections of the two graphs are the solution of the simultaneous equations, which is $(3,2)$ and $(2,-1)$.

1) SOLVE THE SIMULTANEOUS EQUATION GIVEN USING GRAPHING CALCULATOR

$$
4 x+y=-6 \text { and } x^{2}-5 x y=6
$$



## INVESTIGATION:-

a) What can you say about the graphs?
i. $A$ $\qquad$ and $a$ $\qquad$ graph.
ii. The linear function makes a $\qquad$ graph. while the reciprocal function makes a $\qquad$
iii. The two graphs $\qquad$ at two points.
b) What are the solutions of the simultaneous equations?

The $\qquad$ of the two graphs are the solution of the simultaneous equations, which are $\square$

2) SOLVE THE SIMULTANEOUS EQUATION GIVEN USING GRAPHING CALCULATOR

$$
x y=36 \text { and } 2 x+2 y=25
$$



## INVESTIGATION:-

a) What can you say about the graphs?
i. $A$ $\qquad$ and $a$ $\qquad$ graph.
ii. The linear function makes a $\qquad$ a while the reciprocal function makes a $\qquad$
iii. The two graphs $\qquad$ at two points.
b) What are the solutions of the simultaneous equations?

The $\qquad$ of the two graphs are the solution of the simultaneous equations, which are ( $\square$ ) and

3) SOLVE THE SIMULTANEOUS EQUATION GIVEN USING GRAPHING CALCULATOR

$$
3 x-y=7 \text { and } x^{2}-x y+y^{2}=7
$$

Hint: - simplified the quadratic equation:

$$
\begin{array}{ll}
y=3 x-7 & y=+\sqrt{7-x^{2}+x(3 x-7)} \\
y=-\sqrt{7-x^{2}+x(3 x-7)}
\end{array}
$$



## INVESTIGATION:-

a) What can you say about the graphs?
i. $A$ $\qquad$ and a. $\qquad$ graph.
ii. The linear function makes a ........................................, while the quadratic function makes $a$. $\qquad$
iii. The graphs intersect at $\qquad$ point.
iv. Since the quadratic function has square root to be translated as $\qquad$ and .......................... values, the functions also varies.
b) What are the solutions of the simultaneous equations?

The intersections of the two graphs are the solution of the simultaneous equations, which are


## PAST YEAR QUESTION（2003）

Solve the simultaneous equations $4 x+y=2$ and $x^{2}+x-y=12$ ．

## Solution by using G．C

1．In order to solve this question，make $y$ as the subject of both equations as following：

$$
\begin{aligned}
& y=2-4 x \\
& y=x^{2}+x-12
\end{aligned}
$$

2．Follow step 1 and 2 as provided for the example question．
3．For step 3，change the setting for WINDOW as shown．

4．Follow steps 4 to 6 as provided for the example question．
Answer

WIFLOW

## SPM CLONE（2007）

Solve the following simultaneous equations，

$$
\begin{aligned}
& 2 x-y-11=0 \\
& 2 x^{2}-10 x+y+17=0
\end{aligned}
$$

## Answer

$$
\begin{aligned}
& x=1, y=-9 \\
& x=3, y=-5
\end{aligned}
$$

Hint：


## PAST YEAR QUESTION (2003)

Solve the simultaneous equations $4 x+y=2$ and $x^{2}+x-y=12$.

## Answer

## SPM CLONE (2007)

Solve the following simultaneous equations,

$$
\begin{aligned}
& 2 x-y-11=0 \\
& 2 x^{2}-10 x+y+17=0
\end{aligned}
$$

Answer

TOPIC : COORDINATE GEOMETRY
SUB TOPIC : PERPENDICULAR LINES

LESSON OBJECTIVE :
Students will be able to...
i. to determine the relationship between the gradients of perpendicular lines

APPLICATIONS : CABRIJR

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Accessing Cabri Jr <br> Press APPS and select Cabri Jr <br> press ENTER <br> Press any key to proceed |  |  |
| 2 | DRAWING THE LINE SEGMENT <br> Press GRAPHIto access [F5] menu <br> Select Hide/Show <br> Press $\square$, Select Axes <br> press ENTER <br> To move the axes, press $\square, \square$ to the origin. <br> Press ALPHA. <br> A hand cursor will appear. <br> By using $\triangle, \boxtimes, \square \triangle$ to fix the position of the axes. <br> Press ENTER. |  |  |


| 3 | Go to WINDOW menu and select Segment <br> Press ENTER <br> A small box on the top left indicate the active menu button. <br> Move the pencil anywhere on the screen to plot the first point and press ENTER <br> Press $\qquad$ , $\square$ to drag the segment | - |  |
| :---: | :---: | :---: | :---: |
| 4 | DISPLAY COORDINATES <br> Press GRAPH and select Coord. \& Eq. <br> Press ENTER <br> Move the cursor to highlight a point until the pointer blinking. <br> Press ENTER . ENTER. <br> Move the cursor to highlight the second point and press ENTER . ENTER. <br> Press CLEAR to exit the active menu button |  (ayy) |  |
| 5 | TO MOVE THE POINTS <br> Move cursor to highlight a point and press ALPHA and a hand cursor will appear. <br> Move the point to the desired position and press ENTER | $-\infty$ |  |


| 6 | CONSTRUCT PERPENDICULAR LINE <br> Press ZOOM menu and select Perp. to construct a perpendicular line. <br> Press ENTER. <br> To position the perpendicular line, move the cursor on the line segment. <br> Press ENTER. A perpendicular line will appear. <br> To fix the perpendicular line, press ENTER <br> Press CLEAR to exit the active menu button |  |  |
| :---: | :---: | :---: | :---: |
| 7 | Measuring Slope <br> Press GRAPH. <br> Select Measure. Press $\square$ and choose Slope. <br> Press ENTER. <br> Move the cursor to highlight the line segment and press ENTER. ENTER <br> Move the cursor to highlight the perpendicular line and press ENTER. ENTER |   | Gradient of the line segment is 0.8 (appear on the screen) <br> Gradient of the perpendicular line segment is - 1.2 (appear on the screen) |

## INSTRUCTIONS:

Steps to use the Ti- Graphing calculator to investigate $m_{1} m_{2}=-1$

- Press APPS and choose the CabriJr Application.
- Press any key
- Follow step 1-7
- Complete the table below



## INVESTIGATION

|  |  | Gradient of the perpendicular line, $m_{2}$ <br> [To position the perpendicular line, <br> Coordinates for the <br> line segment | Gradient of the cursor on the line segment. <br> line segment, $m_{1}$ |
| :---: | :---: | :---: | :---: | | Press ZOOM menu and select Perp. to |
| :---: |
| construct a perpendicular line. |
| Press [ENTER.] |$\quad$| $m_{1}$ and $m_{2}$ |
| :---: |
| $(-0.6,3)$ and $(-3,-2)$ |

1. What do you notice about the perpendicular line when you move any points on the line segment?
The perpendicular line moves according to the new line segment.
2. What is the relationship between the gradient of the line segment and its perpendicular line?
The product of the gradient of the line segment and it's perpendicular line is -1
3. Write the relationship between the gradient of the line segment and its perpendicular line in mathematical term.
$\underline{m_{1} \times m_{2}=-1}$


## INVESTIGATION

$\left.\begin{array}{|c|l|l|l|}\hline & & \begin{array}{l}\text { Gradient of the perpendicular line, } m_{2} \\ \text { Coordinates for the } \\ \text { line segment }\end{array} & \begin{array}{c}\text { Gradient of the } \\ \text { line segment, } m_{1}\end{array} \\ \text { [To position the perpendicular line, } \\ \text { move the cursor on the line segment. } \\ \text { Press ZOOM menu and select Perp. to } \\ \text { (Zonstruct a perpendicular line. } \\ \text { Press ENTER.] }\end{array} \quad \begin{array}{l}\text { Product of } \\ m_{1} \text { and } m_{2}\end{array}\right]$

1. What do you notice about the perpendicular line when you move any points on the line segment?
2. What is the relationship between the gradient of the line segment and its perpendicular line?
3. Write the relationship between the gradient of the line segment and its perpendicular line in mathematical term.

## investigation

Given the points $A(-2,4), B(4,2), P(1,4)$ and $Q(0,1)$. Using CabriJr application, show that $A B$ is perpendicular to $P Q$

| Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: |
| INSTRUCTIONS: |  |  |
| Steps to use the Ti- Graphing calculator to investigate $m_{1} m_{2}=-1$ <br> 1. Press $\triangle$ APPS and choose |  |  |
| 2. Press any key |  |  |
| 3. Press GRAPH <br> 4. Choose axes |  |  |
| 5. Adjust the axes and plot all the points given |  |  |
| 6. Construct a segment between $A B$ and $P Q$ measure the slope. (To plot the points, refer the procedure above) |  |  |

## INVESTIGATION

Given the points $A(-2,4), B(4,2), P(1,4)$ and $Q(0,1)$. Using CabriJr application, show that $A B$ is perpendicular to $P Q$

| Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: |
| Steps to use the Ti- Graphing calculator to investigate $\boldsymbol{m}_{1} \boldsymbol{m}_{\mathbf{2}}=\mathbf{- 1}$ <br> 1. Press APPS and choose the CabriJr Application. <br> 2. Press any key |  |  |

TOPIC
: DIFFERENTIATIONS

LESSON OBJECTIVES
Students will be able to...
i. Understand and use the concept of maximum and minimum values to solve problems.
ii. Determine the gradient of tangent at a point on a curve.
iii. Find maximum or minimum values.

EXAMPLE : Draw the graph $y=3 x^{2}+2 x-1$, find
a) $\frac{d y}{d x}$ When $x=-2$
b) Maximum or minimum values

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Draw the graph $y=3 x^{2}+2 x-1$ <br> Press $\left.Y=3 \times, T, \Theta, \eta x^{2}\right](2 x, T, \Theta, \eta \square(1)$ <br> Press GRAPH <br> Press WINDOW, <br> Key in the value for the windows as shown in the diagram |  |  |
| 2 | Find $\frac{d y}{d x}$ when $\boldsymbol{x}=\mathbf{- 2}$ <br> Press MODE $\qquad$ Select : FLOAT 0 <br> Press ENTER |  |  |


|  | Press 2nd TRACE for [CALC] <br> Choose 6: $\frac{d y}{d x}$ <br> Press ENTER <br> Press $X, T, \Theta, \eta$, , CLEAR <br> Key in $(-) 2$ <br> Press ENTER |  | From the graph, as $x=-2, y=7$ $\therefore \frac{d y}{d x}=$ |
| :---: | :---: | :---: | :---: |
| 3 | FIND MAXIMUM OR MINIMUM VALUES <br> Press 2nd TRACE for [CALC] mode..... <br> choose 3: minimum <br> Move the cursor to the left, nearest to the minimum point <br> Press ENTER <br> Move the cursor to the right, nearest to the minimum point <br> Press ENTER <br> Move the cursor to the nearest centre between left and right bound. <br> Press ENTER |  | Since the graph is $\boldsymbol{U}$ shape, then, it has minimum point <br> $\therefore$ Minimum point is |

## ACTIVITY 1

FILL THE TABLE WITH APPROPRIATE ANSWER

| NO | FUNCTION | GRAPH | TURNING POINT/S | $\frac{d y}{d x}=? \text { WHEN }$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $y=2 x^{2}+5$ <br> HINT: <br> Press @ | (SNOM, | MINIMUM, $x=0, y=5$ | $x=-2$ $\frac{d y}{d x}=-8$  |
| 2 | $y=4 x-x^{2}$ <br> HINT: |  | MAXIMUM, $x=2, y=4$  | $x=6$ $\frac{d y}{d x}=-8$ |
| 3 | $y=x^{3}-3 x+9$ |  | MAXIMUM, $x=-1, y=11$ <br> MINIMUM, $x=1, y=7$ | $x=4$ $\frac{d y}{d x}=45$  |

40

## ACTIVITY 1

FILL THE TABLE WITH APPROPRIATE ANSWER

| NO | FUNCTION | GRAPH | TURNING POINT/S | $\frac{d y}{d x}=? \text { WHEN }$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $y=2 x^{2}+5$ |  | MINIMUM, $x=0, y=5$ | $\begin{array}{ll} x=-2 \\ & \\ & \frac{d y}{d x}= \\ & \\ \end{array}$ |
| 2 | $y=4 x-x^{2}$ |  |  | $\begin{array}{ll} x=6 \\ & \frac{d y}{d x}= \\ & \\ & \\ & \\ \end{array}$ |
| 3 | $y=x^{3}-3 x+9$ |  |  | $x=4$ $\frac{d y}{d x}=$ |


| 4 | $f(x)=-4(x-3)^{2}+15$ |  |  | $x=0$ |
| :--- | :--- | :--- | :--- | :--- |
| 5 | $f(x)=-x^{2}+2 x-3$ |  |  | $\frac{d y}{d x}=\square$ |
|  |  |  | $x=-1$ |  |

## ACTIVITY 2

Prove that the curve $y=\frac{1+2 x^{3}}{x^{2}}$ has only one turning point. Determine whether the turning point is maximum or minimum.

| Procedure | Screen | Notes |
| :---: | :---: | :---: |
| Hints: <br> Press $Y=$, key in the equation $y=\frac{1+2 x^{3}}{x^{2}}$ | $\begin{aligned} & \text { F1oti Flotz Flot3 } \\ & V_{1}=1+2 X_{3} \\ & v_{2}= \\ & v_{3}= \\ & v_{5}= \\ & v_{6}= \\ & Y_{7}= \end{aligned}$ |  |
| Press GRAPH. |  | (Suggested window to get the appropriate graph) |
| Press 2nd [CALC], choose 3:minimum, <br> Move the cursor to the left bound, ENTER. <br> Move the cursor to the right bound, ENTER. <br> Move the cursor to the minimum point, <br> ENTER. |  | [answer: (1,3), minimum point] |

## ACTIVITY 2

Prove that the curve $y=\frac{1+2 x^{3}}{x^{2}}$ has only one turning point. Determine whether the turning point is maximum or minimum.

| Procedure | Screenshot/Keystroke | Notes |
| :---: | :---: | :---: |
| Hints: <br> Press $Y=$, key in the equation $y=\frac{1+2 x^{3}}{x^{2}}$ |  |  |
| Press GRAPH. |  |  |

## SPM Question (2005)

The equation of a curve is $y=2 x^{3}-3 x^{2}-12 x+11$.
(a) Find the coordinate of the turning point of the curve. Determine whether each of the turning points is a maximum point or a minimum point.
[Answer: $(-1,18)$ Maximum point, $(2,-9)$ Minimum point]

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | DRAW THE GRAPH $y=2 x^{3}-3 x^{2}-12 x+11$ <br> Press $Y=$ <br> Press GRAPH <br> Press WINDOW, <br> Key in the value for the windows as shown in the diagram |  | Suggested window: |
| 2 | FIND MAXIMUM OR MINIMUM <br> VALUES <br> Press 2nd TRACE for [CALC] mode.....select 3: minimum Move the cursor to the left , nearest to the minimum point Press ENTER <br> Move the cursor to the right, nearest to the minimum point Press ENTER <br> Move the cursor the nearest centre between left and right bound. <br> Press ENTER |   | $\therefore$ Minimum point is (2,-9) |


| FIND MAXIMUM POINT |  |
| :--- | :--- | :--- | :--- |
| Press [2nd [TRACE for [CALC] <br> mode. <br> select 4: maximum <br> Move the cursor to the left, <br> nearest to the maximum point <br> Press ENTER <br> Move the cursor to the right, <br> nearest to the maximum point <br> Press ENTER <br> Move the cursor the nearest <br> centre between left and right <br> bound. <br> Press ENTER | $\therefore$ Maximum point is ( $\mathbf{( 1 , 1 8 )}$ |

## SPM Question (2005)

The equation of a curve is $y=2 x^{3}-3 x^{2}-12 x+11$.
(a) Find the coordinate of the turning point of the curve. Determine whether each of the turning points is a maximum point or a minimum point.

SOLUTION:

```
TOPIC : PROGRESSIONS
```

SUB TOPIC : ARITHMETIC PROGRESSIONS

## LESSON OBJECTIVE :

Students will be able to...
i. Determine by using formula:
a) specific terms in Arithmetic Progressions
b) the number of terms in Arithmetic Progressions
c) find the sum of the first $n$ terms of Arithmetic Progressions

EXAMPLE QUESTION : Given the Arithmetic sequence 1, 4, 7, 10 ... Find:
a) $T_{12}$
b) $n$ when $T_{n}=64$
c) $S_{26}$

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Move the cursor down to FUNC mode and choose SEQ function |  |  |
| Discu | sion $1,4,7,10 \ldots$ <br> Determine the value of $\boldsymbol{a}$ and $\boldsymbol{d}$ for th $\begin{aligned} \boldsymbol{a} & =\square \\ \boldsymbol{d} & =\boldsymbol{T}_{\boldsymbol{n}}-\boldsymbol{T}_{\boldsymbol{n} \mathbf{1}} \\ & =\square-\square \\ & =\square \end{aligned}$ | iven arithmetic progress |  |
| 2 | Press YT $n M \text { in }=1$ <br> Press $X, T, \Theta, \eta$ to insert $n$ symbols. $\begin{aligned} & \mu(n)=1+(n-1) 3 \\ & \mu(n M \text { in })=\{1\} \rightarrow \text { first term, } a \\ & v(n)=n / 2(2 * 1+(n-1) * 3) \\ & v(n M i n)=\{1\} \rightarrow \text { first term, } a \end{aligned}$ |   | $\begin{aligned} & \mu(n M i n)=\{1\} \\ & \mu(n)=1+(n-1) 3 \end{aligned}$ <br> This is the first function that can be made, from $T_{n}=a+(n-1) d$ <br> And the second function is: $\begin{aligned} & S_{n}=\frac{n}{2}[2 a+(n-1) d] \\ & v(n)=n / 2(2 * 1+(n-1) * 3 \\ & v(n M i n)=\{1\} \end{aligned}$ |


| 3 | VIEW THE SEQUENCE <br> Press 2nd WINDOW for [TBLSET] mode set the table: $\begin{aligned} & \text { TblStart = } 1 \\ & \Delta T b l=1 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| 4 | Press [2nd][GRAPH for [TABLE] mode |  | Remember; $\begin{aligned} & u(n)=T_{n} \\ & v(n)=S_{n} \end{aligned}$ |
| 5 | TO DETERMINE THE ANSWER <br> Move the cursor down to the column $n$ until $n=12$ $T_{12}=$ $\square$ <br> Move the cursor down to the column $\mu(n)$ until $\boldsymbol{\mu}(\boldsymbol{n})=\mathbf{6 4}$ $\boldsymbol{n}=$ $\square$ <br> Move the cursor down to the column $n$ until $n=26$ $s_{26}=\square$ |    | $u(n)=T_{n}$ $v(n)=S_{n}$ |

## Given the arithmetic sequence, Find:-

| No | Arithmetic Sequence | $T_{n}$ | $n$ | $S_{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2, 6, 10, 14... | $T_{20}=78$ | When $T_{n}=38$, $n=10$ | $S_{16}=512$ |
| 2 | 21, 18, 15, 12... | $T_{15}=-21$ | When $T_{n}=-30$, $n=18$ | $S_{20}=-150$ |
| 3 | -6, 1, 8, 15... | $T_{10}=57$ | When $T_{n}=85$, $n=14$ | $S_{20}=1210$ |
| 4 | $-12,-9,-6,-3 .$. | $T_{25}=60$ | When $T_{n}=45$, $n=20$ | $S_{10}=15$ |
| 5 | $\frac{1}{3}, \frac{7}{12}, \frac{5}{6}, \frac{13}{12} \ldots$ | $T_{8}=2.0833$ | When $T_{n}=4.3333$, $n=17$ | $S_{15}=8.5$ |

## Given the arithmetic sequence, Find:-

| No | Arithmetic Sequence | $\boldsymbol{T}_{\boldsymbol{n}}$ | $n$ | $S_{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2, 6, 10, 14... | $T_{20}=$ | $\text { When } \begin{aligned} T_{n} & =38, \\ n & =\square \end{aligned}$ | $S_{16}=$ |
| 2 | 21, 18, 15, 12... | $T_{15}=$ | $\text { When } \begin{aligned} T_{n} & =-30, \\ n & = \end{aligned}$ | $S_{20}=$ |
| 3 | $-6,1,8,15 \ldots$ | $T_{10}=$ | $\begin{aligned} \text { When } T_{n} & =85, \\ n & =\square \end{aligned}$ | $S_{20}=$ |
| 4 | $-12,-9,-6,-3 .$. | $T_{25}=$ | When $T_{n}=45$, <br> $n=$ | $S_{10}=$ |
| 5 | $\frac{1}{3}, \frac{7}{12}, \frac{5}{6}, \frac{13}{12} \ldots$ | $T_{8}=$ | When $T_{n}=4.3333$, $n=\square$ | $S_{15}=$ |

## ENRICHMENTS

## SPM 2004 (PAPER 1: NO. 11)

The volume of water in a tank is 450 liters on the first day. Subsequently, 10 liters of water is added to the tank every day.

Calculate the volume, in liters, of water in the tank at the end of the $7^{\text {th }}$ day.

Answer: $T_{7}=510$

## SPM 2005 (PAPER 1: NO.11)

The first three terms of an arithmetic progression are 5, 9, 13. Find
a) the common difference of the progression
b) the sum of the first 20 terms after the $3^{\text {rd }}$ term

Answer:
a) $d=4$
b) 1100

## SPM 2005 (PAPER 2: SECTION A: NO.3)

Diagram 1 shows part of an arrangement of bricks of equal size.


## Diagram 1

The number of bricks in the lowest row is 100. For each of the rows, the number of bricks is 2 less than in the row below. The height of each bricks is 6 cm .

Ali builds a wall by arranging bricks in this way. The number of bricks in the highest row is 4. Calculate
a) the height, in cm , of the wall
b) the total price of the bricks used if the price of one brick is 40 sen

Answer:
a) 294 cm
b) $R M 1019.20$

## ENRICHMENTS

## SPM 2004 (PAPER 1: NO. 11)

The volume of water in a tank is 450 liters on the first day. Subsequently, 10 liters of water is added to the tank every day.

Calculate the volume, in liters, of water in the tank at the end of the $7^{\text {th }}$ day.

## SPM 2005 (PAPER 1: NO.11)

The first three terms of an arithmetic progression are 5, 9, 13. Find
a) the common difference of the progression
b) the sum of the first 20 terms after the $3^{\text {rd }}$ term

## SPM 2005 (PAPER 2: SECTION A: NO.3)

Diagram 1 shows part of an arrangement of bricks of equal size.


## Diagram 1

The number of bricks in the lowest row is 100. For each of the rows, the number of bricks is 2 less than in the row below. The height of each bricks is 6 cm .

Ali builds a wall by arranging bricks in this way. The number of bricks in the highest row is 4. Calculate
a) the height, in cm , of the wall
b) the total price of the bricks used if the price of one brick is 40 sen
[3 marks]
[3 marks]

```
TOPIC : PROGRESSIONS
```

SUB TOPIC : GEOMETRIC PROGRESSIONS

## LESSON OBJECTIVE :

Students will be able to...
i. Determine by using formula:
a) specific terms in Geometric Progressions
b) the number of terms in Geometric Progressions
c) find the sum of the first $n$ terms of Geometric Progressions

EXAMPLE : Given the Geometric sequence 1, 3, 9, 27 ... Find
a) $T_{12}$
b) $n$ when $T_{n}=729$
c) $S_{11}$

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press MODE <br> Choose SEQ function |  |  |
| Discussion <br> Determine the value of $\boldsymbol{a}$ and $\boldsymbol{r}$ for the given geometric progression $\begin{aligned} & a=\square \\ & \begin{aligned} \boldsymbol{r}=\frac{\boldsymbol{T}_{n}}{\boldsymbol{T}_{n-1}} & =\frac{\square}{\square} \\ & =\square \end{aligned} \\ & \end{aligned}$ |  |  |  |
| 2 | Press Y= $n M i n=1$ <br> Press $X, T, \boldsymbol{\Theta}, \eta$ to insert $n$ symbols. $\begin{aligned} & \mu(n)=1(3)^{n-1} \\ & \mu(n M i n)=\{1\} \rightarrow \text { first term, } a \end{aligned}$ |  | $\begin{aligned} & \begin{array}{l} \mu(n)=1(3)^{n-1} \\ \mu(n M i n)=\{1\} \end{array} \end{aligned}$ <br> This is the first function that can be made, from $T_{n}=\operatorname{ar}^{(n-1)}$ <br> And the second function is: $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$ |



## Given the Geometric sequence, Find:-

| No | Geometric Sequence | $\boldsymbol{T}_{\boldsymbol{n}}$ | $n$ | $S_{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 192, -96, 48, -24, ... | $T_{7}=3$ | $\begin{gathered} \text { When } \begin{array}{c} T_{n}=0.1875, \\ n=11 \end{array} \end{gathered}$ | $S_{7}=129$ |
| 2 | 2, 6, 18, 54, ... | $T_{10}=39366$ | When $T_{n}=1458$, $n=7$ | $S_{8}=6560$ |
| 3 | 20, 10, 5 ... | $T_{9}=0.07813$ | $\begin{gathered} \text { When } T_{n}=\frac{5}{8}, \\ n=6 \end{gathered}$ | $S_{17}=40$ |
| 4 | 0.1,-0.3,0.9 ... | $T_{14}=-1968$ | $\text { When } \begin{gathered} T_{n}=-218.7, \\ n=8 \end{gathered}$ | $S_{20}=-53144$ |
| 5 | 1458, 486, 162, 54, ... | $T_{10}=0.7407$ | $\begin{gathered} \text { When } T_{n}=2 \text {, } \\ n=7 \end{gathered}$ | $S_{10}=2187$ |

## ENRICHMENTS

1. In the progression $5,10,20,40, \ldots$ Find the least number of terms required such that their sum exceeds 1000.

Answer: 8

## SPM 2005 (PAPER 1: NO.12)

The sum of the first $n$ terms of the geometric progression $8,24,72, \ldots$ is 8744 . Find
a) the common ratio of the progression
b) the value of $n$
[4 marks]
Answer:
a) $r=3$
b) $n=7$

## Given the Geometric sequence, Find:-

| No | Geometric Sequence | $\boldsymbol{T}_{\boldsymbol{n}}$ | $n$ | $S_{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 192, -96, 48, -24, ... | $T_{7}=$ | $\text { When } \begin{aligned} T_{n} & =0.1875, \\ n & =\square \end{aligned}$ | $S_{7}=$ |
| 2 | $2,6,18,54, \ldots$ | $T_{10}=$ | When $T_{n}=1458$, $n=\square$ | $S_{8}=$ |
| 3 | 20, 10, 5 ... | $T_{9}=$ | $\begin{gathered} \text { When } T_{n}=\frac{5}{8} \text {, } \\ n=\square \end{gathered}$ | $S_{17}=$ |
| 4 | 0.1,-0.3,0.9 ... | $T_{14}=$ | $\text { When } \begin{aligned} T_{n} & =-218.7, \\ n & =\square \end{aligned}$ | $S_{20}=$ |
| 5 | 1458, 486, 162, 54, ... | $T_{10}=$ | When $\begin{aligned} & n T_{n}=2, \\ & n=\square \end{aligned}$ | $S_{10}=$ |

## ENRICHMENTS

1. In the progression $5,10,20,40, \ldots$. Find the least number of terms required such that their sum exceeds 1000.

## SPM 2005 (PAPER 1: NO.12)

The sum of the first $n$ terms of the geometric progression $8,24,72, \ldots$ is 8744.
Find
a) the common ratio of the progression
b) the value of $n$
[4 marks]

```
TOPIC : LINEAR LAW
SUB TOPIC : LINE OF BEST FIT
```


## LESSON OBJECTIVES <br> :

Students will be able to...
i. Draw line of best fit by inspection of given data.
ii. Write equation for lines of best fit.
iii. Determine values of variables from:
a) lines of best fit
b) equations of lines of best fit

EXAMPLE : Draw a line of best fit from the given set of data.

| $x$ | 2 | 4 | 6 | 8 | 10 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 4.8 | 8.1 | 11.6 | 13.4 | 15.9 | 19.5 |


| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | KEY-IN VALUES X AND Y <br> Press STAT <br> Choose 1.EDIT... <br> ENTER | EDIM CALC TESTS <br> inedit.. <br> 2: Sortics <br> s: Sortoc <br> 4:crelist <br> 5:Set.UFEditor | $L_{1}=x, L_{2}=y$ |
| 2 | PLOTTING THE GRAPH <br> Press [2nd $T \forall$ for [STAT PLOT] mode <br> Choose 1: Plot 1 <br> ENTER <br> Choose the Plotter Graph |   |  |


| 3 | Press ZOOM <br> Choose 9: ZOOM STAT |  |  |
| :---: | :---: | :---: | :---: |
| 4 | TO OBTAIN THE EQUATION OF THE LINEAR FUNCTION <br> Press STAT <br> Choose[calc]. <br> Choose 4: LinReg (ax+b), <br> Press 2nd [L1] [2nd [L2] $\square$ <br> Press VARS <br> Choose [Y-VARS] <br> Choose 1: Function <br> Choose 1: Y1 <br> ENTER <br> Press ENTER again. |   <br> URRS W-WHETS <br> 18Function.: <br> 2: Parametric. <br>  $\qquad$ $\begin{aligned} & \text { inReg } \\ & -y=\exists x+b \\ & \exists=1.41 \\ & b=2.346666667 \end{aligned}$ |  |
| 5 | DRAW LINE OF BEST FIT <br> Press GRAPH |  |  |

1
The table shows the experimental values of two variables $x$ and $y$.

| $\boldsymbol{x}$ | 1.0 | 2.2 | 3.0 | 4.5 | 5.0 | 6.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 63.1 | 27.5 | 15.8 | 7.2 | 4.0 | 1.4 |

It is known that $\boldsymbol{y}$ and $\boldsymbol{x}$ is related by an equation $\boldsymbol{y}=\boldsymbol{p}^{-\boldsymbol{x}}$ where $\boldsymbol{p}$ and $\boldsymbol{q}$ are constants.
a) Plot a graph of $\underline{l o g}_{10} \underline{\underline{y}}$ against $\underline{x}$ and draw a line of best fit.
b) Use your graph to find the value of

$$
\begin{array}{cc}
\text { i. } & p \\
\text { ii. } & q
\end{array}
$$

ANSWER:

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | KEY IN THE VALUES <br> Press STAT <br> Choose 1.EDIT... <br> ENTER <br> Move the cursor to $\mathbf{L 3}$ <br> Press LOG 2nd [L2] | EDIM CRLC TESTS <br> 2: Sortick <br> 3 : Sortac <br> 4 ClrList <br> 5: Setupeditor | $\begin{aligned} & L_{1}=x, \\ & L_{2}=y, \\ & L_{3}=\log y \end{aligned}$ <br> Press MODE. Move the cursor to FLOAT Choose 3 for three decimal places. |
| 2 | PLOTTING THE GRAPH <br> Press [2nd [r for [STAT PLOT] mode <br> Choose 1: Plot 1 <br> ENTER <br> Choose the Plotter Graph Move the cursor to Ylist <br> Press 2nd [L3] <br> ENTER |   | Plot $\log _{10} \mathrm{y}$ against x |


| 3 | Press ZOOM <br> Choose 9 : ZOOM STAT OR <br> Press WINDOW |  | Suggested Window |
| :---: | :---: | :---: | :---: |
| 4 | TO OBTAIN THE EQUATION OF LINEAR FUNCTION <br> Press STAT <br> Choose[calc]. <br> Choose 4: LinReg (ax+b), <br> Press 2nd [L1] [2nd [L3] $\square$ <br> Press VARS <br> Choose [Y-VARS] <br> Choose 1: Function ENTER <br> Choose 1: Y1 ENTER <br> Press ENTER | EDIT LFLC TESTS <br> 1:1-var stats <br> 2:2-yar stats <br> 5:Med-Med <br> 4:LinReg (ax+b) <br> 6: Cubideg <br> P4WartReg <br> LinReg(ax+b) Li, <br> L3, <br> VARS W-WFRE <br> fipunction. <br> 2:Parametric... <br>  <br> LinReg(ax+b) Li, <br> L3, Yi $\begin{gathered} \text { LinReg } \\ \exists=a \times+296 \\ b=2.10 .1 \end{gathered}$ |  |


| 5 | DRAW LINE OF BEST FIT <br> Press GRAPH |  |  |
| :---: | :---: | :---: | :---: |
| 6 | FINALIZE THE ANSWER <br> From the equation, $\begin{aligned} \log _{10} p & =y \text {-intercept } \\ & =2.103 \\ p & =126.77 \end{aligned}$ $\begin{aligned} -\log _{10} q & =\text { Gradient } \\ & =-0.296 \\ q & =1.977 \end{aligned}$ |  | Change $\boldsymbol{y}=\boldsymbol{p q}^{-\boldsymbol{x}}$ into linear equation in form $Y=m X+c$ $\begin{aligned} & \log _{10} y=(-\log q) x+\log _{10} p \\ & a=\text { gradient }=m \\ & b=Y \text {-intercept }=c \end{aligned}$ |

The table shows the experimental values of two variables $x$ and $y$.

| $\boldsymbol{x}$ | 1.0 | 2.2 | 3.0 | 4.5 | 5.0 | 6.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 63.1 | 27.5 | 15.8 | 7.2 | 4.0 | 1.4 |

It is known that $\boldsymbol{y}$ and $\boldsymbol{x}$ is related by an equation $\boldsymbol{y}=\boldsymbol{p} \boldsymbol{q}^{-\boldsymbol{x}}$ where $\boldsymbol{p}$ and $\boldsymbol{q}$ are constants.
a) Plot a graph of $\log _{10} y$ against $x$ and draw a line of best fit.
b) Use your graph to find the value of
$\begin{array}{cc}\text { i. } & p, \\ \text { ii. } & \boldsymbol{q} .\end{array}$
ANSWER :

2. Table shows the values of two variables, $\boldsymbol{x}$ and $\boldsymbol{y}$, obtained from an experiment.

The variables $x$ and $y$ are related by the equation $y=k x+\frac{h}{k x}$, where $k$ and $h$ are constants.

| $\boldsymbol{x}$ | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 5.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{y}$ | 5.5 | 4.7 | 5.0 | 6.5 | 7.7 | 8.4 |

(a) Plot a graph of $\boldsymbol{y} \boldsymbol{x}$ against $\boldsymbol{x}^{2}$, by using a scale of 2 cm to 5 units on both axes. Hence, draw a line of best fit.
(b) Use your graph to from (a) to find the value of
(i) $k$,
(ii) $h$.

ANSWER:

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | KEY IN THE VALUES <br> Press STAT <br> Choose 1.EDIT... <br> ENTER <br> Key in the value of $x$ in $L_{1}$ <br> Key in the value of $y$ in $L_{3}$ <br> Move the cursor to $L_{3}$ <br> Press [2nd 1 (for [L1]) 区 2nd (2) (for <br> [L2]) <br> ENTER <br> Move the cursor to [L4] <br> Press [2nd 1 (for [L1]) $x^{2}$ ] <br> ENTER | EDIT CRLC TESTS <br> 2: Sorth <br> 4: $01 r$ ist <br> 5: Setureditor | $\begin{aligned} & L_{1}=x, \\ & L_{2}=y, \\ & L_{3}=x y \\ & L_{4}=x^{2} \end{aligned}$ <br> Press MODE. Move the cursor to FLOAT Choose 3 for three decimal places. |


| 2 | PLOTTING THE GRAPH <br> Press 2nd [r for [STAT PLOT] mode Choose 1:Plot 1 <br> ENTER <br> Choose the Plotter Graph <br> Move the cursor to Xlist <br> Press 2nd [L4] <br> Move the cursor to Ylist <br> Press [2nd] [L4] [L3] <br> ENTER |  | Plot $\boldsymbol{x} \boldsymbol{y}$ against $\boldsymbol{x}^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: |
| 3 | Press Z00M <br> Choose 9 : ZOOM STAT <br> OR <br> Press WINDOW |  | Suggested Window <br> WIFIDOW <br> Xmin= -5 <br> 人 $\mathrm{max}=34$ <br> $\mathrm{x} \cdot \mathrm{c} 1=5$ <br> 4 min= <br> $\mathrm{Yscl}=5$ <br> Xres=1 |
| 4 | TO OBTAIN THE EQUATION OF LINEAR FUNCTION <br> Press STAT <br> Choose[calc]. <br> Choose 4: LinReg ( $a x+b$ ), |  |  |


|  | Press [2nd 44 (for [L4]) प 2nd 3 <br> (for [L3] $\square$ <br> Press VARS <br> Choose [Y-VARS] <br> Choose 1: Function ENTER <br> Choose 1: Y1 ENTER <br> Press ENTER | LinReg(ax+b) L4, L3,Yi <br> LinReg <br> $\exists=a \times+b$ <br> $=3=1.461$ $b=3.51$ |  |
| :---: | :---: | :---: | :---: |
| 5 | DRAW LINE OF BEST FIT <br> Press GRAPH |  |  |
| 6 | FINALIZE THE ANSWER <br> From the equation $\begin{array}{ll} k & =\text { gradient } \\ k \quad & =1.401 \end{array}$ $\begin{aligned} & \frac{h}{k}=y-\text { intercept } \\ & =\underline{3.531} \\ & \\ & \quad \therefore h=3.531 \times k \\ & \quad \underline{h=4.95} \end{aligned}$ | Can you define which is $Y$, $m, X$, and $c$ ? | Change the equation $y=k x+\frac{h}{k x}$ into linear equation in form of $\begin{aligned} & \boldsymbol{Y}=\boldsymbol{m} \boldsymbol{X}+\boldsymbol{c} \\ & x y=k x^{2}+\frac{h}{k} \\ & a=\text { gradient }=m \\ & b=Y \text {-intercept }=c \end{aligned}$ |

2. Table shows the values of two variables, $\boldsymbol{x}$ and $\boldsymbol{y}$, obtained from an experiment.

The variables $x$ and $y$ are related by the equation $y=k x+\frac{h}{k x}$, where $k$ and $h$ are constants.

| $\boldsymbol{x}$ | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 5.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{y}$ | 5.5 | 4.7 | 5.0 | 6.5 | 7.7 | 8.4 |

(b) Plot a graph of $\boldsymbol{y} \boldsymbol{x}$ against $\boldsymbol{x}^{2}$, by using a scale of 2 cm to 5 units on both axes. Hence, draw a line of best fit.
(c) Use your graph to from (a) to find the value of
(i) $k$,
(ii) $\quad h$.

ANSWER:


## ENRICHMENTS

1. Table shows the values of two variables, $\boldsymbol{x}$ and $\boldsymbol{y}$, obtained from an experiment.

Variables and $y$ are related by the equation $y=2 k x^{2}+\frac{p}{k} x$, where $p$ and $k$ are constants.

| $\boldsymbol{x}$ | 2 | 3 | 4 | 6 | 8 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 8 | 13.2 | 20 | 27.5 | 36.6 | 45.5 |

a) Plot $\frac{y}{x}$ against $x$, using a scale of 2 cm to 1 unit on both axes. Hence, draw the line of best fit.
b) Use your graph in (a), to find the value of
(i) $\boldsymbol{p}$,
(ii) $\boldsymbol{k}$,
(iii) $\boldsymbol{y}$ when $\boldsymbol{y}=1.2$
2. Table shows the values of two variables, $\boldsymbol{x}$ and $\boldsymbol{y}$, obtained from an experiment.

Variables $\boldsymbol{x}$ and $\boldsymbol{y}$ are related by the equation $y=h k^{2 x}$, where $h$ and $k$ are constants.

| $\boldsymbol{x}$ | 1.5 | 3.0 | 4.5 | 6.0 | 7.5 | 9.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 2.51 | 3.24 | 4.37 | 5.75 | 7.76 | 10.00 |

a) Based on Table, construct a table for the values of $\log _{\mathbf{1 0}} \boldsymbol{y}$.
b) Plot $\log _{10} y$ against $\boldsymbol{x}$, using a scale of 2 cm to 1 unit on the $\boldsymbol{x}$-axis and 2 cm to 0.1 unit on the $\log _{10} y$ axis. Hence, draw the line of best fit.
c) Use the graph in (b) to find the value of:
(i) $\boldsymbol{x}$ when $\boldsymbol{y}=4.8$,
(ii) $\boldsymbol{h}$,
(iii) $\boldsymbol{k}$.

## TOPIC

 : INTEGRATIONSUBTOPIC : DEFINE INTEGRALS

## LESSON OBJECTIVE :

Students will be able to...
i. Understand and use the concept of definite integrals
ii. Determine the area under a curve using definite integrals

EXAMPLE QUESTION : Compute:
a) $\int_{-3}^{1}\left(5-2 x-x^{2}\right) d x$
b) Find the area bounded by the curve $y=5-2 x-x^{2}$ and the $x$ axis such that $-3 \leq x \leq 1$

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| Questions for discussion <br> i. Do you think the example questions for (a) and (b) are the same? Why? <br> ii. What do you understand about the word 'definite'? |  |  |  |
| 1 | Plot the graph 5-2x- $x^{2}$ <br> Press $Y=5 \square X, T, \Theta, n-$ $X, T, \Theta, \Pi \quad x^{2}$ |  |  |
| 2 | Press GRAPH |  |  |
| 3 | Find $\int_{-3}^{1}\left(5-2 x-x^{2}\right) d x$ <br> Press 2nd TRACE for [CALC] mode Choose 7: $\int f(x) d x$ |  |  |


|  | Key in lower limit =-3 <br> ENTER <br> Key in upper limit $=\mathbf{1}$ <br> ENTER <br> The value of the integral is $\square$ <br> Therefore, the area bounded by the curve is $\square$ | Lowercimit: <br> Cones, | Press 2nd PRGM for [DRAW] mode <br> Choose 1:CIrDraw before proceed to next question. |
| :---: | :---: | :---: | :---: |
| 4 | Lower Limit and Upper Limit can be adjusted flexibly, based on the question asked. <br> For example: $\begin{aligned} \text { area } & =\int_{-3}^{0} f(x) d x+\int_{0}^{1} f(x) d \\ & =\square+\square \\ & =\square \end{aligned}$ | LiN: <br>  |  <br>  |



The diagram shows the area bounded by the curve $\boldsymbol{y}=\boldsymbol{x}(\mathbf{4}-\boldsymbol{x})$, the line $\mathbf{2 x}-\boldsymbol{y}=\mathbf{0}$ and the $x$-axis. Find:-
a) The coordinates of points $\boldsymbol{A}$ and $\boldsymbol{B}$.
b) The area of shaded region.

| Step | Procedure | Screenshot / key-stroke |
| :---: | :---: | :---: |
| 1 | Key in the relevant equations <br> Plot the Graph |  |
| 2 | To find the Intersection <br> 2nd TRACE for [CALC] mode <br> Choose 5:intersect <br> Choose first curve? <br> ENTER <br> (the cursor must be located near to the intersection point) <br> Choose second curve? <br> ENTER <br> (the cursor must be located near to the intersection point) <br> Choose Guess? <br> ENTER <br> Intersection is (2,4). $\therefore A=(2,4)$ |  |


| 3 | To find the ZERO point <br> 2nd TRACE for [CALC] mode <br> Choose 2:zero <br> Choose Left Bound? <br> (Bring the cursor nearby the $x$-axis) <br> Choose Right Bound? <br> (Bring the cursor nearby the $x$-axis) <br> Choose Guess? <br> (Bring the cursor between Left-Bound and Right-Bound) <br> The x-intercept is 4 $\therefore B=(4,0)$ |  |
| :---: | :---: | :---: |
| 4 | To find the area of shaded Region <br> 2nd TRACE for [CALC] mode <br> Choose 7: $\int f(x) d x$ <br> Plot for $\int_{0}^{2} f_{1}(x) d x+\int_{2}^{4} f_{2}(x) d x$ <br> (Be careful on selecting the function) <br> The area of shaded region $\begin{aligned} & =4+5.333 \\ & =\mathbf{9 . 3 3 3} \end{aligned}$ |  |



The diagram shows the area bounded by the curve $\boldsymbol{y}=\boldsymbol{x}(\mathbf{4}-\boldsymbol{x})$, the line $\mathbf{2 x}-\boldsymbol{y}=\mathbf{0}$ and the $x$-axis. Find:-
a) The coordinates of points $\boldsymbol{A}$ and $\boldsymbol{B}$.
b) The area of shaded region.

| Step | Procedure | Screenshot / key-stroke |
| :---: | :---: | :---: |
| 1 | Key in the relevant equations <br> Plot the Graph |  |
| 2 | Find the Intersection <br> 2nd TRACE for [CALC] mode Choose 5:intersect |  |
| 3 | Find the ZERO point <br> 2nd TRACE for [CALC] mode Choose 2:zero |  |
| 4 | Find the area of shaded Region <br> 2nd TRACE for [CALC] mode <br> Choose 7: $\int f(x) d x$ |  |

## ENRICHMENT

1. Find the area of the shaded region in the diagram

2. Find the area of the shaded region in the diagram.


Answer: $20 \frac{5}{6} u n i t^{2}$
3. Find the area of the shaded in the diagram.
y


Answer: $2 \frac{2}{3} u n i t^{2}$

## ENRICHMENT

1. Find the area of the shaded region in the diagram

2. Find the area of the shaded region in the diagram.

3. Find the area of the shaded in the diagram.


TOPIC : TRIGONOMETRIC FUNCTIONS

SUBTOPIC : GRAPHS OF SINE, COSINE AND TANGENT FUNCTIONS.

LESSON OBJECTIVE :
Students will be able to...
i. Draw and sketch graphs of trigonometric functions.

$$
y=c+a \cos b x
$$

EXAMPLE QUESTION Draw and sketch graph of $y=\cos x$ for $0 \leq x \leq 360^{\circ}$

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press MODE and choose RADIAN |  | Make sure the RAM is clear |
| 2 | Press $Y=$ <br> Key in the trigonometry function. $y=\cos x$ <br> Press $\operatorname{Cos} X, T, \Theta, \eta \square$ |  |  |
| IF TH <br> Press <br> Choos <br> Choo | FUNCTION REQUIRE ABSOLUTE VALUE; <br> MATH <br> NUM <br> 1:abs\| |  |  |
| 3 | Press WINDOW <br> key in WINDOW setting with appropriate value | $\begin{aligned} & \text { WINDOW } \\ & \text { min= } \\ & \text { max }=2 \pi \\ & \text { min= }=15707963 \ldots \\ & \text { max } \\ & \operatorname{MsG}=1 \\ & \text { Xres=1 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Xmax }=2 \pi=360^{\circ}, \\ \text { since } \mathbf{0} \leq \boldsymbol{x} \leq \mathbf{3 6 0}^{\circ} \\ \text { Xscl }=\frac{\boldsymbol{\pi}}{2} \end{gathered}$ <br> Ymin and Ymax varies accordingly. |
| 4 | Press GRAPH to view the graph |  |  |

Investigation

| Graph | Maximum | Minimum | Amplitude | No of Cycle |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}=\cos \boldsymbol{x}$ | 1 | -1 | 1 | 1 |

Draw and sketch graph of given functions for $0 \leq x \leq 360^{\circ}$ by using graphing calculator

| No | Function | WINDOW setting | Graph |
| :---: | :---: | :---: | :---: |
| 1 | $y=\cos 2 x$ |  |  |
| 2 | $y=\|\cos 2 x\|$ |  | /, |
| 3 | $y=-\|\cos 2 x\|$ |  |  |
| 4 | $y=\cos \frac{1}{2} x$ |  |  |
| 5 | $y=2 \cos x$ |  |  |


| 6 | $y=3 \cos 2 x$ |  |  |
| :---: | :---: | :---: | :---: |
| 7 | $y=\cos x+1$ |  |  |
| 8 | $y=\cos x-1$ |  |  |
| 9 | $y=\cos 2 x+1$ |  |  |
| 10 | $y=\|\cos 2 x\|+1$ |  |  |
| 11 | $y=\|\cos 2 x\|-1$ |  | 寿 $/$ |

TEACHER'S NOTE
INVESTIGATION

| No | Graph | Maximum | Minimum | Amplitude | No of Cycle |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $y=\cos 2 x$ | 1 | -1 | 1 | 2 |
| 2 | $y=\|\cos 2 x\|$ | 1 | 0 | 1 | 2 |
| 3 | $y=-\|\cos 2 x\|$ | 0 | -1 | 1 | 2 |
| 4 | $y=\cos \frac{1}{2} x$ | 1 | -1 | 1 | $\frac{1}{2}$ |
| 5 | $y=2 \cos x$ | 2 | -2 | 2 | 1 |
| 6 | $y=3 \cos 2 x$ | 3 | -3 | 3 | 2 |
| 7 | $y=\cos x+1$ | 2 | 0 | 1 | 1 |
| 8 | $y=\cos x-1$ | 0 | -2 | 1 | 1 |
| 9 | $y=\cos 2 x+1$ | 2 | 0 | 1 | 2 |
| 10 | $y=\|\cos 2 x\|+1$ | 2 | 1 | 1 | 2 |
| 11 | $y=\|\cos 2 x\|-1$ | 0 | -1 | 1 | 2 |

## DISCUSSIONS

For the function $y=c+a \cos b x$, answer the questions

1. Describe the relationship between coefficients $\boldsymbol{a}$ and the shape of the graph.

The coefficient, a gives the value of the amplitude or range of the graph.
2. Describe how the difference in coefficient $\boldsymbol{c}$ will change the graphs' features Changing $\boldsymbol{c}$ will move the graph up or down by $|c|$ units.

| Graph | Move up/down | No. of unit the <br> graph move |
| :---: | :---: | :---: |
| $\boldsymbol{y}=\cos \boldsymbol{x}$ | none | none |
| $\boldsymbol{y}=\cos \boldsymbol{x}+\mathbf{1}$ | Move Up | 1 unit |
| $\boldsymbol{y}=\cos \boldsymbol{x}-\mathbf{1}$ | Move Down | 1 unit |

3. Describe the relationship between coefficients $\boldsymbol{b}$ and the shape of the graph.

The coefficient b gives the number of cycles in one rotation $\left(360^{\circ}=2 \pi\right)$
Changing $\boldsymbol{b}$ affects the period. The period is $\frac{2 \pi}{b}$ and $\boldsymbol{b}$ cannot be 0

Draw and sketch graph of given functions for $0 \leq x \leq 360^{\circ}$ by using graphing calculator

| No | Function | WINDOW setting | Graph |
| :---: | :---: | :---: | :---: |
| 1 | $y=\cos 2 x$ |  |  |
| 2 | $y=\|\cos 2 x\|$ |  |  |
| 3 | $y=-\|\cos 2 x\|$ |  |  |
| 4 | $y=\cos \frac{1}{2} x$ |  |  |
| 5 | $y=2 \cos x$ |  |  |


| 6 | $y=3 \cos 2 x$ |  |  |
| :---: | :---: | :---: | :---: |
| 7 | $y=\cos x+1$ |  |  |
| 8 | $y=\cos x-1$ |  |  |
| 11 |  |  |  |
| 10 | $y=\cos 2 x+1$ |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |


| No | Graph | Maximum | Minimum | Amplitude | No of Cycle |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $y=\cos 2 x$ | 1 |  |  | 2 |
| 2 | $y=\|\cos 2 x\|$ |  |  | 1 |  |
| 3 | $y=-\|\cos 2 x\|$ | 0 |  |  |  |
| 4 | $y=\cos \frac{1}{2} x$ |  | -1 |  |  |
| 5 | $y=2 \cos x$ |  |  |  |  |
| 6 | $y=3 \cos 2 x$ |  |  |  |  |
| 7 | $y=\cos x+1$ |  |  |  |  |
| 8 | $y=\cos x-1$ |  |  |  |  |
| 9 | $y=\cos 2 x+1$ |  |  |  |  |
| 10 | $y=\|\cos 2 x\|+1$ |  |  |  |  |
| 11 | $y=\|\cos 2 x\|-1$ |  |  |  |  |

## DISCUSSIONS

For the function $y=c+a \cos b x$, answer the questions

1. Describe the relationship between coefficients $\boldsymbol{a}$ and the shape of the graph.

The coefficient, a gives the value of the $\qquad$ or $\qquad$ of the graph.
2. Describe how the difference in coefficient $\boldsymbol{c}$ will change the graphs' features

Changing c will move the graph $\qquad$ or $\qquad$ by $\qquad$

| Graph | Move up/down | No. of unit the <br> graph move |
| :---: | :---: | :---: |
| $\boldsymbol{y}=\boldsymbol{\operatorname { c o s } \boldsymbol { x }}$ | none | none |
| $\boldsymbol{y}=\boldsymbol{\operatorname { c o s } \boldsymbol { x } + \mathbf { 1 }}$ |  |  |
| $\boldsymbol{y}=\boldsymbol{\operatorname { c o s } \boldsymbol { s } \boldsymbol { x } - \mathbf { 1 }}$ |  |  |

3. Describe the relationship between coefficients $\boldsymbol{b}$ and the shape of the graph.

The coefficient b gives the $\qquad$ in $\qquad$ $\left(360^{\circ}=2 \pi\right)$

Changing b affects the $\qquad$ The period is $\qquad$ and $\boldsymbol{b}$ cannot be 0

Draw the graph $y=c+a \cos b x$ below for $0^{\circ} \leq x \leq 360^{\circ}$ and answer the question

No | Function / Investigation |
| :---: |
| 1. |
| 2. |
| Draw the two graphs above on the same |
| axis |

Draw the graph $y=c+a \cos b x$ below for $0^{\circ} \leq x \leq 360^{\circ}$ and answer the question

| No | Function / Investigation | Graph/Answer |
| :---: | :---: | :---: |
| 1. | $y=2 \cos x$ |  |
| 2. | $y=3$ cos $x$ |  |
| 3. | Draw the two graphs above on the same <br> axis |  |
|  |  |  |

Draw the graph $y=c+a \cos b x$ below for $0^{\circ} \leq x \leq 360^{\circ}$ and answer the question

| No | Function / Investigation | Graph / answer |
| :---: | :---: | :---: |
| 1. | $y=\cos x$ |  |
| 2. | $y=\cos 2 x$ |  |
| 3. | $y=\cos 3 x$ | $\left[\begin{array}{ccccc}\vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots\end{array}\right]$ |
| 4. | Draw the graphs above on the same axis |  |
| 5. | Write the conclusion | The coeficient b gives the number of cycle in one rotation of the graph. |

Draw the graph $y=c+a \cos b x$ below for $0^{\circ} \leq x \leq 360^{\circ}$ and answer the question

| No | Function / Investigation | Graph / answer |
| :---: | :---: | :---: |
| 1. | $y=\cos x$ |  |
| 2. | $y=\cos 2 x$ |  |
| 3. | $y=\cos 3 x$ |  |
| 4. | Draw the graphs above on the same axis |  |
| 5. | Write the conclusion |  |

Draw the graph $y=c+a \sin b x$ below for $0^{\circ} \leq x \leq 360^{\circ}$ and answer the question

| No | Function / Investigation | Window Setting | Graph / answer |
| :---: | :---: | :---: | :---: |
| Eg. | $y=\sin x$ |  |  |
| 1 | $\begin{aligned} & y=\sin 2 x \\ & Y=S I N \text { Q X,T,日,n} \square \\ & \text { GRAPH } \end{aligned}$ |  |  |
| 2 | $y=-\sin 2 x$ |  |  |
| 3 | $y=-\sin x$ |  |  |
| 4 | $y=2 \sin x$ |  |  |
| 5 | $y=\sin 45^{\circ}$ |  |  |

Draw the graph $y=c+a \sin b x$ below for $0^{\circ} \leq x \leq 360^{\circ}$ and answer the question

| No | Function / Investigation | Window Setting | Graph / answer |
| :---: | :---: | :---: | :---: |
| Eg. | $y=\sin x$ |  |  |
| 1 | $\begin{aligned} & y=\sin 2 x \\ & Y=\operatorname{SIN} \text { 2 X,T,Q,n} \square \\ & \text { GRAPH } \end{aligned}$ | WIFDOW min= max= scin= min= mad= Mres= |  |
| 2 | $y=-\sin 2 x$ | WINDOW <br> Min= <br> max= <br> mal= <br> min= <br> max= <br> SGes= |  |
| 3 | $y=-\sin x$ | WINDOW <br> min= <br> max= <br> $8=G 1=$ <br> $M i n=$ <br> max= <br> GGl= <br> Xres= |  |
| 4 | $y=2 \sin x$ | WIFDOW min= max= min= max= mse $=$ Mres= |  |
| 5 | $y=\sin 45^{\circ}$ | WIFDOU <br> 品in= <br> xax= <br> 人scl= <br> Yin= <br> Ymax= <br> Yscl= <br> Xres= |  |

Draw the graph $y=c+a$ tan bx below for $0^{\circ} \leq x \leq 360^{\circ}$ and answer the question

| No | Function / Investigation | Window Setting | Graph / answer |
| :---: | :---: | :---: | :---: |
| Eg. | $y=\tan x$ |  |  |
| 1 | $y=\tan 2 x$ $Y=T A N \quad X, T, \Theta, \Pi$ <br> GRAPH |  |  |
| 2 | $y=-\tan 2 x$ |  |  |
| 3 | $y=-\tan x$ |  |  |
| 4 | $y=2 \tan x$ |  | [1/ |
| 5 | $y=\tan 45^{\circ}$ |  |  <br>  <br>  <br> tanc45) <br>  |

Draw the graph $y=c+a$ tan bx below for $0^{\circ} \leq x \leq 360^{\circ}$ and answer the question

| No | Function / Investigation | Window Setting | Graph / answer |
| :---: | :---: | :---: | :---: |
| Eg. | $y=\tan x$ |  |  |
| 1 | $y=\tan 2 x$ $Y=T A N \quad X, T, \Theta, \eta$ |  |  |
| 2 | $y=-\tan 2 x$ |  |  |
| 3 | $y=-\tan x$ | WIFDTDW <br> min= <br> max= <br> min= <br> min= <br> max= <br> Sres= |  |
| 4 | $y=2 \tan x$ | $\begin{aligned} & \text { WINDOW } \\ & \text { min= } \\ & \text { max= } \\ & \text { min= } \\ & \text { max= } \\ & \text { Yocs= } \end{aligned}$ |  |
| 5 | $y=\tan 45^{\circ}$ | WINDTD <br> min= <br> max= <br> mal= <br> min= <br> max= <br> Scl= <br> Mres= |  |

## SPM QUESTIONS

1. Which of the following graph represent $y=\cos 2 x$ ?

A

1


B
1


C
1

o
1

2. Which of the following represents the graph of $y=\cos x$ for $0^{\circ} \leq x \leq 180^{\circ}$ ?
A

c

B

D

3. Which of the following graphs represents $y=\sin 2 x$ for $0^{\circ} \leq x^{\circ} \leq 180$ ?
A

c

B

D


4
Which of the following graphs represents $y=\sin x$ for $0^{\circ} \leq x \leq 180^{\circ}$ ?
A

C

B

D


## Graphs of Tangent

Predict and sketch the graphs of the following tangent functions for $0 \leq x \leq 2 \pi$.
Test your predictions by drawing the tangent graph by using graphic calculator.

No. 1 | $\boldsymbol{a}$ |
| :--- |

## Conclusion:

As the value of $\boldsymbol{b}$ increase, the number of complete cycle increases accordingly

As the value of blecrease, the number of complete cycle decreases accordingly

TEACHER'S NOTE

| No. | $a$ | $b$ | c | $y=a \tan b x+c$ | Graphs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 1 | 1 | 0 | $y=\tan x$ |  |
| 7 | 2 | 1 | 0 | $y=2 \tan x$ |  |
| 8 | 3 | 1 | 0 | $y=3 \tan x$ |  |
| 9 | -1 | 1 | 0 | $y=-\tan x$ |  |
| 10 | -2 | 1 | 0 | $y=-2 \tan x$ |  |
|  |  | clu | n: | the graph becomes the graph becomes |  |

TEACHER'S NOTE

| No. | $a$ | b | c | $y=\tan x+1$ | Graphs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1 | 1 | 1 | $y=\tan x+2$ |  |
| 12 | 1 | 1 | 2 | $y=\tan x+3$ |  |
| 13 | 1 | 1 | 3 | $y=\tan x-1$ | $\square$ |
| 14 | 1 | 1 | -1 | $y=\tan x-2$ |  |
| 15 | 1 | 1 | -2 | $y=\tan x-2$ |  |
| As the value of c increase, the graph is shifted upwards. <br> As the value of $c$ decrease, the graph is shifted downwards |  |  |  |  |  |


| No. | $a$ | $b$ | c | $y=\|\tan x\|$ | Graphs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | 1 | 1 | 0 | $y=\|\tan 2 x\|$ |  |  |
| 17 | 1 | 2 | 0 | $y=\|-\tan x\|$ |  |  |
| 18 | -1 | 1 | 0 | $y=\|\tan x+1\|$ |  |  |
| 19 | 1 | 1 | 1 | $y=\|3 \tan 2 x-2\|$ |  |  |
| 20 | 3 | 2 | -2 | $y=\|3 \tan 2 x-2\|$ |  |  |
|  |  | abs | n: $x-a x$ | igonometric function | sitive due to being reflected | ted upwards |

## Graphs of Tangent

Predict and sketch the graphs of the following tangent functions for $0 \leq x \leq 2 \pi$.
Test your predictions by drawing the tangent graph by using graphic calculator.

| No. | $a$ | $b$ | c | $y=a \tan b x+c$ | Graphs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | $y=\tan x$ |  |
| 2 | 1 | 2 | 0 | $y=\tan 2 x$ |  |
| 3 | 1 | 3 | 0 | $y=\tan 3 x$ |  |
| 4 | 1 | -1 | 0 | $y=\tan (-x)$ |  |
| 5 | 1 | -2 | 0 | $y=\tan -2 x$ |  |
| Conc | usio | he <br> he |  | the number of comp <br> the number of compl |  |


| No. | $a$ | $b$ | c | $y=a \tan b x+c$ | Graphs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 1 | 1 | 0 | $y=\tan x$ |  |
| 7 | 2 | 1 | 0 | $y=2 \tan x$ |  |
| 8 | 3 | 1 | 0 | $y=3 \tan x$ |  |
| 9 | -1 | 1 | 0 | $y=-\tan x$ |  |
| 10 | -2 | 1 | 0 | $y=-2 \tan x$ |  |
| As the value of $\underline{a}$ $\qquad$ the graph becomes $\qquad$ <br> As the value of $\underline{a}$ $\qquad$ the graph becomes $\qquad$ |  |  |  |  |  |


| No. | $a$ | b | c | $y=\tan x+1$ | Graphs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1 | 1 | 1 | $y=\tan x+2$ |  |
| 12 | 1 | 1 | 2 | $y=\tan x+3$ |  |
| 13 | 1 | 1 | 3 | $y=\tan x-1$ |  |
| 14 | 1 | 1 | -1 | $y=\tan x-2$ |  |
| 15 | 1 | 1 | -2 | $y=\tan x-2$ |  |
| Con | A | he <br> he |  | the graph is shif the graph is shif |  |



## INVESTIGATION

1. The effect of $a, b$ and $c$ in the trigonometric functions $y=a \tan (b x)+c$ is

As the value of a increase, the graph becomes narrower
As the value of a decrease, the graph becomes wider

As the value of $b$ increase, the number of complete cycle increases accordingly
As the value of $\boldsymbol{b}$ decrease, the number of complete cycle decreases accordingly

As the value of c increase, the graph is shifted upwards.
As the value of c decrease, the graph is shifted downwards
2. The absolute value of a trigonometric function causes its graph to

The absolute value of a trigonometric function causes $\boldsymbol{y}$ value to be positive due to being reflected upwards about the $x$-axis

## INVESTIGATION

1. The effect of $a, b$ and $c$ in the trigonometric functions $y=a \tan (b x)+c$ is

As the value of a $\qquad$ the graph becomes $\qquad$

As the value of a $\qquad$ the graph becomes $\qquad$

As the value of $\boldsymbol{b}$ $\qquad$ the number of complete cycle $\qquad$ accordingly

As the value of $b$ $\qquad$ the number of complete cycle $\qquad$ accordingly

As the value of $c$ $\qquad$ the graph is shifted $\qquad$

As the value of $c$ $\qquad$ the graph is shifted $\qquad$
2. The absolute value of a trigonometric function causes its graph to

The absolute value of a trigonometric function causes $\boldsymbol{y}$ value to be $\qquad$ due to being reflected
$\qquad$ about the $x$-axis

## Topic : TRIGONOMETRY II

Learning Objective : 1. Understand and use the concept of the values of $\sin \theta, \cos \theta$ and $\tan \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$ to solve problems.
2. Draw and use the graphs of sine, cosine and tangent.

## Lesson Objective :

Students will be able to...
i. Find the values of sine, cosine and tangent for angles between $0^{\circ}$ and $360^{\circ}$.

EXAMPLE QUESTION : Find the values of $\sin \theta$ for $0^{\circ} \leq \theta \leq \mathbf{3 6 0}^{\circ}$ and fill in the table below

| $x$ | $0^{\circ}$ | $30^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $120^{\circ}$ | $150^{\circ}$ | $180^{\circ}$ | $210^{\circ}$ | $240^{\circ}$ | $270^{\circ}$ | $300^{\circ}$ | $330^{\circ}$ | $360^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Key in the function $y=\sin x .$ |  |  |
| 2 | Press MODE <br> Setup for DEGREE press ENTER |  |  |
| 3 | Setup the WINDOW |  | - X-axis scale is $30^{\circ}$ for 1 unit. |
| 4 | Press GRAPH |  |  |


| 5 | Press 2nd TRACE, on CALCULATE menu, choose 1:value, |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Key in the value for $x$ $X=30$ <br> Press ENTER <br> Repeat step 5 for all the $x$-values |  |  |  |  |  |  | Y, |  | When $x=30^{\circ}$, then $\mathrm{y}=0.5$ |  |  |  |
| The values of $\sin \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\boldsymbol{x}$ | $0^{\circ}$ | $30^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $120^{\circ}$ | $150^{\circ}$ | $180^{\circ}$ | $210^{\circ}$ | $240^{\circ}$ | $270^{\circ}$ | $300^{\circ}$ | $330^{\circ}$ | $360^{\circ}$ |
| $y$ | 0 | 0.5 | 0.86 | 1 | 0.86 | 0.5 | 0 | -0.5 | - | -1 | -0.866 | -0.5 | 0 |

1. Find the values of $\cos \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$ and fill in the table below

| $x$ | $0^{\circ}$ | $30^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $120^{\circ}$ | $150^{\circ}$ | $180^{\circ}$ | $210^{\circ}$ | $\mathbf{2 4 0}$ | $270^{\circ}$ | $300^{\circ}$ | $330^{\circ}$ | $360^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 1 | 0.866 | 0.5 | 0 | -0.5 | - | -1 | - | -0.5 | 0 | 0.5 | 0.866 | 1 |

2. Find the values of tan $\boldsymbol{\theta}$ for $0^{\circ} \leq \boldsymbol{\theta} \leq 360^{\circ}$ and fill in the table below

| $x$ | $0^{\circ}$ | $30^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $120^{\circ}$ | $150^{\circ}$ | $180^{\circ}$ | $210^{\circ}$ | $240^{\circ}$ | $270^{\circ}$ | $300^{\circ}$ | $330^{\circ}$ | $360^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 0.577 | 1.732 | UnDef | - | - | 0 | 0.577 | 1.732 | UnDef | - | - | 0 |

1. Find the values of $\cos \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$ and fill in the table below

| $x$ | $0^{\circ}$ | $30^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $120^{\circ}$ | $150^{\circ}$ | $180^{\circ}$ | $210^{\circ}$ | $240^{\circ}$ | $270^{\circ}$ | $300^{\circ}$ | $330^{\circ}$ | $360^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ |  |  |  |  |  |  |  |  |  |  |  |  |  |

2. Find the values of $\tan \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$ and fill in the table below

| $x$ | $0^{\circ}$ | $30^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $120^{\circ}$ | $150^{\circ}$ | $180^{\circ}$ | $210^{\circ}$ | $240^{\circ}$ | $270^{\circ}$ | $300^{\circ}$ | $330^{\circ}$ | $360^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ |  |  |  |  |  |  |  |  |  |  |  |  |  |

TOPIC : TRIGONOMETRIC FUNCTIONS

SUB TOPIC : GRAPHS OF SINE, COSINE AND TANGENT FUNCTIONS.

## LESSON OBJECTIVES :

Students will be able to...
i. Determine the number of solutions to a trigonometric equations using sketched graph.
ii. Solve trigonometric equations using drawn graphs.

EXAMPLE QUESTION : On the same axes, sketch the graphs $\boldsymbol{y}=\mathbf{3} \cos 2 \boldsymbol{x}$ and $\boldsymbol{y}=\boldsymbol{x}-\mathbf{1}$ for $\mathbf{0} \leq \boldsymbol{x} \leq \mathbf{2 \pi}$. Hence, find the number of solutions and the values of $x$ for the equation $\mathbf{3} \cos \mathbf{2 x}+\mathbf{1}=\boldsymbol{x}$.

| Step | Procedure | Screenshot / keystroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Key in the functions $y=3 \cos 2 x \text { and } y=x-1$ |  |  |
| 2 | Press GRAPH <br> (Adjust the Window Setting accordingly) | (a, | Can you see the intersection between the two graphs <br> How many intersection points? <br> 3 intersection points means <br> 3 solutions |
| 3 | TO FIND THE INTERSECTION <br> Press 2nd TRACE for CALC mode Choose 5:intersect |  |  |

5

Solve the equation $5-13 \sin x=2 \cos 2 x$ for $\mathbf{0}^{\circ} \leq x \leq 360^{\circ}$.
Hence, find the number of solutions

## ANSWER:

| Step | Procedure | Screenshot / key-stroke Notes |
| :---: | :---: | :---: |
| 1 | Key in the functions $\begin{gathered} y=5-13 \sin x \text { and } \\ y=2 \cos 2 x \end{gathered}$ | (the setting is in radian) <br> From the graph, it has 2 intersections, which means 2 solutions. |
| 2 | Find the intersection points | Therefore, <br> The intersection points are (0.25, 1.75), and (2.89, 1.75) |

Solve the equation $5-13 \sin x=2 \cos 2 x$ for $0^{\circ} \leq x \leq 360^{\circ}$. Hence, find the number of solutions

ANSWER:

| Step | Procedure | Screenshot/key-stroke |
| :---: | :---: | :---: |
| 1 | Key in the functions |  |
| 2 | Find the intersection points |  |
|  |  |  |

## TOPIC

 : LINEAR PROGRAMMING
## SUBTOPIC : THE CONCEPT OF LINEAR INEQUALITIES

## LESSON OBJECTIVE :

Students will be able to...
i. Identify and shade the region in which every point satisfies a linear inequality
ii. Find the linear inequality that defines a shaded region

EXAMPLE QUESTION : For each of the following, identify and shade the region in which every point satisfies the given linear inequality:

$$
\begin{aligned}
y & \geq x-6 \\
2 x & +2 y<8 \\
y & \leq 3 x-8
\end{aligned}
$$

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press APPS; <br> Scroll down until find :Inequalz. <br> ENTER |  |  |
| 2 | Key in the equation $y \geq x-6$ <br> Press ALPHA GRAPH to set the inequalities function. <br> Press GRAPH |  |  |
| 3 | Key in the equation $2 x+2 y<8$ |  | Make sure to unhighlight the first function. <br> Press ENTER on the inequalities symbol $\begin{gathered} 2 x+2 y<8 \\ 2 y<8-2 x \\ y<4-x \end{gathered}$ |


| 4 | Key in the equation $y \leq 3 x-8$ |  | Make sure to unhighlight the first and second function |
| :---: | :---: | :---: | :---: |
| 5 | Highlight all the functions |   |  |
| 6 | ALPHA Y $Y$ for shades mode <br> Choose 1: Ineq Intersection |  |  |

For each of the following, identify and shade the region in which every point satisfies the given linear inequality, for $x>0$, and $y>0$

$$
\begin{aligned}
y & \leq x+3 \\
2 y-10 & \geq-\frac{3}{2} x \\
y & >2 x-5
\end{aligned}
$$

## SOLUTIONS:

| Step | Procedure | Screenshot / key-stroke |
| :---: | :---: | :---: |
| 1 | Suggested window setting |  |
| 2 | $y \leq x+3$ |  |
| 3 | $2 y-10 \geq-\frac{3}{2} x$ <br> Change $y$ as the subject |  |
| 4 | $y>2 x-5$ |  |
| 5 | Highlight all the functions |  |
| 6 | ALPHA $Y=$ for shades mode <br> Choose 1: Ineq Intersection |  |

For each of the following, identify and shade the region in which every point satisfies the given linear inequality, for $x>0$, and $y>0$

$$
\begin{aligned}
y & \leq x+3 \\
2 y-10 & \geq-\frac{3}{2} x \\
y & >2 x-5
\end{aligned}
$$

## SOLUTIONS:

| Step | Procedure | Screenshot / key-stroke |
| :---: | :---: | :---: |
| 1 | $y \leq x+3$ |  |
| 2 | $2 y-10 \geq-\frac{3}{2} x$ |  |
| 3 | $y>2 x-5$ |  |
| 4 | Highlight all the functions |  |
| 5 | ALPHA $Y=$ for shades mode |  |
|  | Choose 1: Ineq Intersection |  |

TOPIC : LINEAR PROGRAMMING

SUBTOPIC : THE CONCEPT OF LINEAR PROGRAMMING

## LESSON OBJECTIVE :

Students will be able to...
i. Solve problems related to linear programming by shading the region where the points in the region are feasible solutions.

EXAMPLE QUESTION : Mukhriz intends to sell two types of computer printers $A$ and $B$. He buys the printers from the computer company with the following conditions:

I : the total number of printers is at least 150.
II : the number of printer $B$ is at least half the number of printer $A$.
III : Printer A costs RM400 and printer B costs RM200. Mukhriz is able to invest a maximum of RM80000.
(a) If $x$ and $y$ represent the number of printers $A$ and $B$ respectively, write down three inequalities other than $x \geq 0$ and $y \geq 0$ which satisfy the above conditions.
[3 marks]
(b) By using a scale of 2 cm to 50 units on both axes, construct and shade the region $R$ which satisfies all the above conditions.
[3 marks]

| Step | Procedure | Screenshot / key-stroke | Notes |
| :---: | :---: | :---: | :---: |
| 1 | Press APPS-key; Scroll down until find :Inequalz. | ```APFLICHT IONE t0lentsch : Easyロata : ESF:arol :Fransais :FunGOi BIne=\|!alz qLearnChk``` |  |
| 2 | Key in the equations: $\begin{gathered} x+y \geq 150 \\ y \geq \frac{x}{2} \\ 2 x+y \leq 400 \end{gathered}$ |  | $\begin{aligned} & x+y \geq 150 \\ & y \geq 150-x \\ & y \geq \frac{x}{2} \\ & 2 x+y \leq 400 \\ & y \leq 400-2 x \end{aligned}$ |



TEACHER'S NOTE

## Activity 1

The Mathematics and Science department in a school is organizing a camp for students. The camp will be attended by $x$ male and $y$ female students. The selection of camp participants is based on the following conditions:

I : The total number of participants is at least 30.
II : The number of male students exceeds the number of female students by a maximum of 20.
III : The expenditure per male students and per female students is RM20 and RM40 respectively and the maximum allocation for the camp is RM1600.
(a) Find three linear inequalities other than $x \geq 0$ and $y \geq 0$ which satisfy the above conditions.
(b) By using a scale of 2cm to 10 participants on axis $x$ and $y$, construct and shade the region $R$ that satisfies all the above conditions.

## Solutions:

$$
\begin{array}{ll}
\text { I : } & x+y \geq 30 \\
\text { II }: & y \geq x-20 \\
\text { III : } & x+2 y \leq 80
\end{array}
$$



## Activity 1

The Mathematics and Science department in a school is organizing a camp for students. The camp will be attended by $x$ male and $y$ female students. The selection of camp participants is based on the following conditions:

I : The total number of participants is at least 30.
II : The number of male students exceeds the number of female students by a maximum of 20 .
III : The expenditure per male students and per female students is RM20 and RM40 respectively and the maximum allocation for the camp is RM1600.
(a) Find three linear inequalities other than $x \geq 0$ and $y \geq 0$ which satisfy the above conditions.
(b) By using a scale of 2cm to 10 participants on axis $x$ and $y$, construct and shade the region $R$ that satisfies all the above conditions.

Solutions:

## ENRICHMENT

## SPM 2005 (PAPER 2: SECTION C: NO.14)

An institution offers two computer courses, $P$ and $Q$. The number of participants for courses $P$ is $x$ and for course $Q$ is $y$.
The enrolment of the participants is based on the following constraints:
I : The total number of participants is not more than 100
II : The number of participants for course $Q$ is not more than 4 times the number of participants for course $P$.
III : The number of participants for course $Q$ must exceed the number of participants for course $P$ by at least 5 .
a) Write down three inequalities, other than $x \geq 0$ and $y \geq 0$, which satisfy all the above constraints.
[3 marks]
b) By using a scale of 2 cm to 10 participants on both axes, construct and shade the region $R$ that satisfies all the above constraints.
[3 marks]
c) By using your graph from (b), find
(i) The range of the number of participants for course $Q$ if the number of participants for course $P$ is 30
(ii) The maximum total fees per month that can be collected if the fees per month for courses $P$ and $Q$ are RM50 and RM60 respectively.
[4 marks]
Answer:
a) 1 : $x+y \leq 100$

II : $y \leq 4 x$
III : $y \geq x+5$
b)

c) (i) Draw line $x=30$


Press GRAPH
Press TRACETto read the intersection values


When $x=30,35 \leq y \leq 70$
(ii) Total fees, $k=50 x+60 y$

If $k=3000,3000=50 x+60 y$
$K$ maximum if $x=20, y=80$
Total fees maximum $=50(20)+60(80)$
$=R M 5800$


## ENRICHMENT

## SPM 2005 (PAPER 2: SECTION C: NO.14)

An institution offers two computer courses, $P$ and $Q$. The number of participants for courses $P$ is $x$ and for course $Q$ is $y$.
The enrolment of the participants is based on the following constraints:

I : The total number of participants is not more than 100
II : The number of participants for course $Q$ is not more than 4 times the number of participants for course $P$.
III : The number of participants for course $Q$ must exceed the number of participants for course $P$ by at least 5.
a) Write down three inequalities, other than $x \geq 0$ and $y \geq 0$, which satisfy all the above constraints.
[3 marks]
b) By using a scale of 2 cm to 10 participants on both axes, construct and shade the region $R$ that satisfies all the above constraints.
c) By using your graph from (b), find
(i) The range of the number of participants for course $Q$ if the number of participants for course $P$ is 30
(ii) The maximum total fees per month that can be collected if the fees per month for courses $P$ and $Q$ are RM50 and RM60 respectively.

## PANEL OF CONTRIBUTORS

## Advisors:

Datu Dr Hj. Julaihi Hj. Bujang
Director
Curriculum Development Division

## Dr. Lee Boon Hua

Deputy Director (Humanities)
Curriculum Development Division

Mohd. Zanal bin Dirin
Deupty Director (Science and Technology) Curriculum Development Division

Editorial Advisor:
Aziz bin Saad
Principal Assistant Director (Head of Science and Mathematics Sector)

Curriculum Development Division

Editors:

Dr. Rusilawati binti Othman
Assistant Director
(Head of Secondary Mathematics Unit)
Curriculum Development Division

Radin Muhd Imaduddin bin Radin Abdul Halim Assistant Director Curriculum Development Division

## Wong Sui Yong

Assistant Director
Curriculum Development Division
Aszunarni binti Ayob
Assistant Director
Curriculum Development Division

Susilawati binti Ehsan
Assistant Director
Curriculum Development Division

Rosita binti Mat Zain
Assistant Director Curriculum Development Division

Mohd Lufti bin Mahpudz
Assistant Director
Curriculum Development Division

Tay Bee Lian
SMK Abu Bakar, Temerloh, Pahang
Aziah bt A. Aris
SMK Danau Kota, Setapak, Kuala Lumpur
Nor Farahiyah bt Abdul Rahman
SMK Sri Utama, Petaling Jaya, Selangor
Azina bt Hamzah
SMK Bandar Baru Sungai Long, Kajang, Selangor
Thanabalan a/l Andy
SMK Bandar Sunway, Petaling Jaya, Selangor

Rosnita bt Mohd Yusoff
SMK Seri Kampar, Kampar, Perak
Mohd Nasir b Abdullah
SMK Toh Indera Wangsa Ahmad, Batu Gajah, Perak
Mohamad Halmi b Miswan
SMK Felda Besout, Sungkai, Perak
Ong Poh Har
SMK Toh Indera Wangsa Ahmad, Batu Gajah, Perak
Thuraisingam a/l Subraniam
SMK Teknik Setapak, Setapak, Kuala Lumpur
Teoh Hooi Leng
SMK Taman Connaught, Cheras, Kuala Lumpur
Zefry Hanif b Burham@Borhan
Sekolah Sultan Alam Shah (SMBP), Putrajaya
Mohd Faizal Mohd Derus
SMK Dato' Undang Musa Al-Haj, Negeri Sembilan
Zainomal bt Ngah
SMK(A) Sheikh Abdul Malek, Terengganu
Nolizam bt Long
SMK Balai Besar, Dungun, Terengganu
Kassim b Abd. Manaf
SMK Seri Pangkalan, Alor Gajah, Melaka

## Writers:

Anis Sabarina bt. Abu Bakar SMK(P) Air Panas, Setapak, Kuala Lumpur<br>Hjh Nor Hadijah bt Hashim<br>SMK Segambut Jaya, Kuala Lumpur<br>Zaini bt Yahya<br>SMA Persekutuan, Kajang, Selangor<br>Liew Ti Woon<br>SMK USJ 8, Subang Jaya, Selangor<br>Hanisah bt Mat Akin<br>SMK Sungai Besar, Selangor<br>Zainab bt Abdul Rahman<br>SMK Convent, Taiping, Perak<br>Chang Sook Kham<br>SMK Seri Kampar, Ipoh, Perak<br>Dg Masnih bt Ag Rajid@Pg Rajid<br>SMK Ahmad Boestamam, Sitiawan, Perak<br>'Atikah bt Mohd Kassim<br>SM Sains Seri Puteri, Jalan Kolam Ayer, Kuala Lumpur<br>\section*{Nor Farizean bt Mohd Zain}<br>SMK Dato' Ibrahim Yaacob, Jalan Ipoh, Kuala Lumpur<br>Wan Azlilah bt Wan Nawi<br>SMK Putrajaya 9(1), Putrajaya<br>Ahmad Sadini b Mat Kapel<br>SMK Palong 7(F), Gemas, Negeri Sembilan<br>Norafida bt Konting<br>SM Sains Seremban, Negeri Sembilan<br>Azhan b Abdul Rahim<br>SMK Matang, Kuala Berang, Terengganu<br>Tan Chan Fa<br>SMK Rahmat, Alor Gajah, Melaka<br>Syakinah bt Waris<br>SMK Bukit Beruang, Melaka

## Writers:

Norrela bt Abdul Malek
SMK Long Yunus, Bachok, Kelantan

## Roslan b Mohd Hassan

SMK Manek Urai, Kuala Krai, Kelantan

Azizan b Dahaman
SMK (A) Kangar, Perlis
Shamsulbadri b Ishak
SMK Mergong, Alor Setar, Kedah
Alias b Mansor
SMK Sultanah Bahiyah, Alor Setar, Kedah
Sharifah Zorina Hj Syed Mustapha
SMK Datok Hj Mohd Nor Ahmad, Pulau Pinang
Baharom Sham Shapien
SMK Seri Jengka, Pekan Tajau Maran, Pahang
Noorazlan b Mohamad
SMK Seri Bentong, Karak, Pahang
Faridah bt Pairan
SMK Pasir Gudang, Johor
Chung Kui San@Wilson
SMK Balai Ringin, Serian, Sarawak
Halimaton Amirah bt Ngah
SMK Matang Hilir, Kuching, Sarawak

## Aileen Beh Chik Heang

SMK Datuk Peter Mojuntin, Penampang, Sabah

## Chieng Mee King

SMK Lajau, W.P. Labuan

Puteri Iryani Pertiwi bt Ahmad SMK Dewan Beta, Kota Bharu, Kelantan

## Roslela bt Hamzah

SMK Derma, Kangar, Perlis
Nor Zaidi b Shaari
SMK Tengku Suleiman, Kangar, Perlis
Sabri b Safie
SMK Ayer Hitam, Alor Setar, Kedah
Loo Kean Peng
SMK Georgetown, Pulau Pinang
Jeyaletchumi a/p Muthiah
SMK Tunku Puan Habsah, Pulau Pinang
Wong Geok Hua
SMK Air Putih, Kuantan, Pahang

## Ng Seng How

SMK Kahang, Kluang, Johor
Mohd Azaran b Bahari
SMK Tenang Stesen, Segamat, Johor
Sivanesuaran a/l Selvaretnam SMK Serian, Serian, Sarawak

Chong Boon Peng
SMK Tawau, Sabah

Flavia bt Alam
SMK Tenom, Sabah

